【題目】已知函數(shù)在區(qū)間上有最小值1,最大值9.

1)求實數(shù)a,b的值;

2)設,若不等式在區(qū)間上恒成立,求實數(shù)k的取值范圍;

3)設),若函數(shù)有三個零點,求實數(shù)的取值范圍.

【答案】1,23

【解析】

1在區(qū)間上為單調遞減,解方程組即可得解;

2)換元令,不等式化為,分離參數(shù)即可求解;

3)換元,結合圖象討論的根的情況.

解:(1)因為函數(shù)對稱軸為,,

所以在區(qū)間上為單調遞減

所以,,

解得:,

2

,∴

不等式化為

上恒成立

因為,所以

所以

3)函數(shù)有三個零點

則方程有三個不同根

其圖象如下圖

由題意,關于m的方程:

有兩根,且這兩根有三種情況:

一根為0,一根在內;或一根為1,一根在內:或一根大于1,一根在

若一根為0,一根在內:

代入中,得

此時方程為,得,不合愿意;

若一根為1,一根在內:

代入中,得

此時方程為,得,不合題意;

若一根大于1,一根在內:

,由題意得

,∴

綜上得:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,并且內切于定圓..

(1)求動圓圓心的軌跡方程;

(2)若上存在兩個點,(1)中曲線上有兩個點,并且三點共線,三點共線,,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某服裝廠生產一種服裝,每件服裝成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,規(guī)定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低元,根據市場調查,銷售商一次訂購不會超過600.

1設一次訂購件,服裝的實際出廠單價為元,寫出函數(shù)的表達式;

2當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,底面是平行四邊形的四棱錐中,點是線段上的點,平面平面,,,.

1)求證:點中點;

2)求證:平面平面;

3)求三棱錐底面上的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,底面,,,,的中點.

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為平行四邊形,中點,

(1)求證:平面;

(2)是正三角形,且.

(Ⅰ)當點在線段上什么位置時,有平面

(Ⅱ)在(Ⅰ)的條件下,點在線段上什么位置時,有平面平面?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中 ,為自然對數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調性;

(Ⅱ)當時,若函數(shù)的圖象恒在直線的上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,真命題是 ( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是函數(shù)的切線,則的最小值為______

查看答案和解析>>

同步練習冊答案