【題目】已知三棱臺中, , , ,平面平面

(1)求證: 平面;

(2)點上一點,二面角的大小為,求與平面所成角的正弦值.

【答案】(1)見解析;(2)

【解析】試題分析:(1)延長 , 交于點.通過證明線和平面內(nèi)的兩條相交直線垂直,證明平面

(2)以為坐標(biāo)原點, , , , 軸的正方向建立空間直角坐標(biāo)系,計算即可.

試題解析:(1)延長, , 交于點

及棱臺性質(zhì)得,所以

因為平面平面平面

所以平面, 平面,所以,

,所以, ,所以平面

(2)由于,由, ,所以,且,

為坐標(biāo)原點, , , 軸的正方向建立空間直角坐標(biāo)系,如圖:則, , , ,

設(shè)

設(shè)平面的法向量為,

,可取

是平面的個法向量,

由二面角的大小為得:

所以中點, , ,

設(shè)與平面所成角為,則

所以與平面所成角為正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個學(xué)生在一次競賽中要回答道題是這樣產(chǎn)生的道物理題中隨機抽取;道化學(xué)題中隨機抽取;道生物題中隨機抽取.使用合適的方法確定這個學(xué)生所要回答的三門學(xué)科的題的序號(物理題的編號為化學(xué)題的編號為,生物題的編號為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,EAB的中點,FAA1的中點.求證:CED1F,DA三線交于一點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時,解不等式

(2)若關(guān)于的方程的解集中恰有一個元素,求的值;

(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在處的切線與直線平行,則實數(shù)____;

當(dāng)a≤0時,若方程有且只有一個實根,則實數(shù)的取值范圍為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次考試中,語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:

(Ⅰ)如果成績大于135的為特別優(yōu)秀,隨機抽取的500名學(xué)生在本次考試中語文、數(shù)學(xué)成績特別優(yōu)秀的大約各多少人?(假設(shè)數(shù)學(xué)成績在頻率分布直方圖中各段是均勻分布的)

(Ⅱ)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中至少有一科成績特別優(yōu)秀的同學(xué)中隨機抽取3人,設(shè)3人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望;

(Ⅲ)根據(jù)以上數(shù)據(jù),是否有99%的把握認(rèn)為語文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

(附公及表)

①若,則, ;

;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(2)當(dāng)時,求證:函數(shù)有最小值,并求函數(shù)最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ),設(shè)方程 , 的實根的個數(shù)為分別為、、,則

A. 9 B. 13 C. 17 D. 21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性并證明;

3)若對任意的,不等式恒成立,求的取值范圍

查看答案和解析>>

同步練習(xí)冊答案