設(shè)x,y滿足約束條件
x≥0
x+2y≥3
2x+y≤3
,則z=x-y的最大值是( 。
分析:根據(jù)已知的約束條件 畫出滿足約束條件的可行域,再用目標(biāo)函數(shù)的幾何意義,求出目標(biāo)函數(shù)的最值,即可求解比值.
解答:解:約束條件 對應(yīng)的平面區(qū)域如下圖示:
由z=x-y可得y=x-z,則-z表示直線z=x-y在y軸上的截距,截距越小,z越大
x+2y=3
2x+y=3
可得A(1,1)
當(dāng)直線z=x-y過A(1,1)時,Z取得最大值0
故選D
點(diǎn)評:本題考查的知識點(diǎn)是線性規(guī)劃,考查畫不等式組表示的可行域,考查數(shù)形結(jié)合求目標(biāo)函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案