分析 (1)由已知條件分別取n=2,3,4,能依次求出a2,a3,a4的值.
(2)猜想${a}_{n}=\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$,當(dāng)n=1時,和n=2時,驗證猜想成立,然后假設(shè)n=k時,猜想成立,由此推導(dǎo)出當(dāng)n=k+1時,猜想成立,由此能證明${a}_{n}=\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.
解答 解:(1)∵數(shù)列{an}的前n項和為Sn,a1=2,且${S_{n-1}}={a_n}(n≥2,n∈{N^*})$.
∴a2=S1=a1=2,
a3=S2=2+2=4,
a4=S3=2+2+4=8.
(2)由a1=2,a2=2,a3=4,a4=8,猜想${a}_{n}=\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.
①當(dāng)n=1時,a1=2;當(dāng)n=2時,a2=2,成立.
②假設(shè)n=k時,成立,即${a}_{k}={2}^{k-1}$,k≥2,
則當(dāng)n=k+1時,ak+1=Sk=2+2+4+8+…+2k-1=2+$\frac{2(1-{2}^{k-1})}{1-2}$=2k,成立,
由①②,得${a}_{n}=\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.
點評 本題考查數(shù)列的前四項的求法,考查數(shù)列的通項公式的猜想和證明,是中檔題,解題時要認(rèn)真審題,注意遞推思想和數(shù)學(xué)歸納法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ,$\frac{π}{2}$+kπ],k∈Z | B. | [-$\frac{π}{2}$+kπ,kπ],k∈Z | ||
C. | [-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ],k∈Z | D. | [$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ],k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {6,8} | B. | {5,7} | C. | {4,6,8} | D. | {1,3,5,6,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{24}{7}$ | B. | $\frac{6}{7}$ | C. | $-\frac{24}{25}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 22 | D. | 23 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com