A,B分別是單位圓與x軸、y軸正半軸的交點(diǎn),點(diǎn)P在單位圓上,∠AOP=θ(0<θ<π),C點(diǎn)坐標(biāo)為(-2,0),平行四邊形OAQP的面積為S.
(1)求·+S的最大值;
(2)若CB∥OP,求sin的值.
(1)+1(2)
【解析】(1)由已知,得A(1,0),B(0,1),P(cos θ,sin θ),
因?yàn)樗倪呅?/span>OAQP是平行四邊形,
所以=+=(1,0)+(cos θ,sin θ)=(1+cos θ,sin θ).
所以·=1+cos θ.
又平行四邊形OAQP的面積為S=||·||sin θ=sin θ,
所以·+S=1+cos θ+sin θ=sin+1.
又0<θ<π,所以當(dāng)θ=時(shí),·+S的最大值為+1.
(2)由題意,知=(2,1),=(cos θ,sin θ),
因?yàn)?/span>CB∥OP,所以cos θ=2sin θ.
又0<θ<π,cos2θ+sin2θ=1,解得sin θ=,cos θ=,
所以sin2 θ=2sin θcos θ=,cos2θ=cos2θ-sin2θ=.
所以sin=sin 2θcos-cos 2θsin=×-×=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)4練習(xí)卷(解析版) 題型:選擇題
已知數(shù)列{an}滿足:a1=1,an>0,=1(n∈N*),那么使an<5成立的n的最大值為 ( ).
A.4 B.5 C.24 D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:解答題
某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:選擇題
設(shè)集合S={x|x>-2},T={x|x2+3x-4≤0},則(∁RS)∪T等于( ).
A.(-2,1] B.(-∞,-4] C.(-∞,1] D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練9練習(xí)卷(解析版) 題型:選擇題
設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,Sm-1=-2,Sm=0,Sm+1=3,則m等于( ).
A.3 B.4 C.5 D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練8練習(xí)卷(解析版) 題型:選擇題
在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿足||=||=·=2,則點(diǎn)集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的區(qū)域的面積是( ).
A.2 B.2 C.4 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練7練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=2cos (其中ω>0,x∈R)的最小正周期為10π.
(1)求ω的值;
(2)設(shè)α,β∈,f=-,f=,求cos(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練18練習(xí)卷(解析版) 題型:選擇題
設(shè)m為正整數(shù),(x+y)2m展開式的二項(xiàng)式系數(shù)的最大值為a,(x+y)2m+1展開式的二項(xiàng)式系數(shù)的最大值為b,若13a=7b,則m等于( ).
A.5 B.6 C.7 D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練14練習(xí)卷(解析版) 題型:填空題
若圓x2+y2=4與圓x2+y2+2ax-6=0(a>0)的公共弦的長為2,則a=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com