.已知拋物線,弦的中點軸的距離為2,則弦的長的最小值為_____

 

【答案】

6

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0),點P(m,n)為拋物線上任意一點,其中m≥0.
(1)判斷拋物線與正比例函數(shù)的交點個數(shù);
(2)定義:凡是與圓錐曲線有關的圓都稱為該圓錐曲線的伴隨圓,如拋物線的內切圓就是最常見的一種伴隨圓.此外還有以焦點弦為直徑的圓,以及以焦點弦為弦且過頂點的圓等.同類的伴隨圓構成一個圓系,圓系中有無數(shù)多個圓.求證:拋物線內切圓系方程為:(x-p-m)2+y2=p2+2pm(其中m為參數(shù)且m≥0);
(3)請研究拋物線以焦點弦為直徑的伴隨圓,推導出其圓系方程,并寫出一個關于它的正確命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知拋物線y2=2px橫坐標為4的點到該拋物線的焦點的距離為5.
(1)求拋物線的標準方程;
(2)設點C是拋物線上的動點,若以C為圓心的圓在y軸上截得的弦長為4,求證:圓C過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知拋物線y2=2px(p>0),過定點A(p,0)作直線交該拋物線于M、N兩點.
(I)求弦長|MN|的最小值;
(II)是否存在平行于y軸的直線l,使得l被以AM為直徑的圓所截得的弦長為定值?若存在,求出l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下三個關于圓錐曲線的命題中:
①設A、B為兩個定點,K為非零常數(shù),若|PA|-|PB|=K,則動點P的軌跡是雙曲線.
②方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率
③雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點.
④已知拋物線y2=2px,以過焦點的一條弦AB為直徑作圓,則此圓與準線相切
其中真命題為
②③④
②③④
(寫出所以真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•福建模擬)已知拋物線C的頂點在坐標原點,焦點F在x軸上,且過點(1,2).
(Ⅰ)求拋物線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個焦點F1作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB|
|F1M|
為定值,且定值是
10
3
”.命題中涉及了這么幾個要素:給定的圓錐曲線T,過該圓錐曲線焦點F1的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F1、M兩點間距離的比值.試類比上述命題,寫出一個關于拋物線C的類似的正確命題,并加以證明.
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關于拋物線的一般性命題(不必證明).

查看答案和解析>>

同步練習冊答案