某射手每次射擊命中率均為p,若其連續(xù)射擊2次均未命中目標的概率是
1
9

(1)求p的值;
(2)若該射手有4發(fā)子彈,最多進行4次獨立的射擊,若命中目標就停止,寫出射擊停止時射擊次數(shù)ξ=3和ξ=4的概率.
考點:相互獨立事件的概率乘法公式
專題:概率與統(tǒng)計
分析:(1)由已知得(1-p)(1-p)=
1
9
,由此能求出p.
(2)ξ=3表示“前兩次均沒有命中目標,第三次才命中目標”,ξ=4表示“前三次均沒有命中目標,第四次才命中目標或四次射擊均沒有命中目標”,由此能求出射擊停止時射擊次數(shù)ξ=3和ξ=4的概率.
解答: 解:(1)由已知得(1-p)(1-p)=
1
9
,
解得p=
2
3

(2)ξ=3表示“前兩次均沒有命中目標,第三次才命中目標”,
∴P(ξ=3)=(1-
2
3
)(1-
2
3
2
3
=
2
27

ξ=4表示“前三次均沒有命中目標,第四次才命中目標或四次射擊均沒有命中目標”,
∴P(ξ=4)=(1-
2
3
)(1-
2
3
)(1-
2
3
)•
2
3
+(1-
2
3
)(1-
2
3
)(1-
2
3
)(1-
2
3
)=
1
27
點評:本題考查概率的求法,是中檔題,解題時要認真審題,注意相互獨立事件概率計算公式的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
log2x,x≥1
f(2x),0<x<1
,則f[(
1
2
)
3
2
]
的值是( 。
A、-1
B、1
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin
x
2
+2cos
x
2
=0.
(1)求tanx的值;
(2)求
cosx+sinx
sinx-cosx
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平行四邊形ABCD的一個頂點坐標為A(-2,1),一組對邊AB,CD的中點分別為M(3,0),N(-1,-2),求平行四邊形的各個頂點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過點P(1,2)做直線與圓C:x2+y2=1相交于A、B兩點,在線段AB上取點Q,滿足|
AP
|•|
BQ
|=|
AQ
|•|
BP
|,證明:點Q總在某定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知拋物線C的頂點在原點,焦點點為圓x2+y2-2x=0的圓心,
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)拋物線C上兩個動點A、B滿足|AF|+BF|=6線段AB的垂直平分線與x軸交于點M;
(1)求點M的坐標;
(2)當線段AB最長時,求△MAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:方程
x2
3-t
+
y2
t+1
=1所表示的曲線為焦點在x軸上的橢圓,q:|t-a|<2(a∈N),若p是q的充分不必要條件,則a取值范圍為( 。
A、(-∞,1]
B、[-1,1]
C、[0,+∞)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系xoy中,動拋物線c:y=2(x-
3
-3cosθ)2+1+3sinθ(θ任意實數(shù)),以O(shè)x軸為極軸建立極坐標系,直線l的極坐標方程是ρcos(θ+
π
6
)=0.
(1)寫出直線l的直角坐標方程和動拋物線c的頂點的軌跡E的參數(shù)方程;
(2)求直線l被曲線E截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某海島上有一座海拔1千米的山,山頂上有一觀察站P(P在海平面上的射影點為A),測得一游艇在海島南偏西30°,俯角為45°的B處,該游艇準備前往海島正東方向,俯角為45°的旅游景點C處,如圖所示.
(Ⅰ)設(shè)游艇從B處直線航行到C處時,距離觀察站P最近的點為D處.
(i)求證:BC⊥平面PAD;(ii)計算B、D兩點間的距離.
(Ⅱ)海水退潮后,在(Ⅰ)中的點D處周圍0.25千米內(nèi)有暗礁,航道變窄,為了有序參觀景點,要求游艇從B處直線航行到A的正東方向某點E處后,再沿正東方向繼續(xù)駛向C處.為使游艇不會觸礁,試求AE的最大值.

查看答案和解析>>

同步練習冊答案