3.閱讀如圖所示的程序框圖,若輸入a的值為$\frac{8}{17}$,則輸出的k值是( 。
A.9B.10C.11D.12

分析 根據(jù)程序框圖的流程,計(jì)算運(yùn)行n次的結(jié)果,根據(jù)輸入a=$\frac{8}{17}$,判斷n滿足的條件,從而求出輸出的k值.

解答 解:由程序框圖知第一次運(yùn)行s=0+$\frac{1}{1×3}$,k=2;
第二次運(yùn)行s=0+$\frac{1}{1×3}$+$\frac{1}{3×5}$,k=3;

∴第n次運(yùn)行s=0+$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}-\frac{1}{5}$+…+$\frac{1}{2n-1}-\frac{1}{2n+1}$)=$\frac{1}{2}$×(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
當(dāng)輸入a=$\frac{8}{17}$時(shí),由n>a得n>8,程序運(yùn)行了9次,輸出的k值為10.
故選:B.

點(diǎn)評(píng) 本題考查了直到型循環(huán)結(jié)構(gòu)的程序框圖,由程序框圖判斷程序運(yùn)行的功能,用裂項(xiàng)相消法求和是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列四種說(shuō)法中:
①有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱
②相等的線段在直觀圖中仍然相等
③一個(gè)直角三角形繞其一邊旋轉(zhuǎn)一周所形成的封閉圖形叫圓錐
④用一個(gè)平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺(tái)
正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.定義在(0,+∞)上的函數(shù)f(x)滿足:$\frac{{x}_{1}f({x}_{1})-{x}_{2}f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且f(2)=4,則不等式f(x)-$\frac{8}{x}$>0的解集為(  )
A.(2,+∞)B.(0,2)C.(0,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.函數(shù)f(x)=sin2x+$\sqrt{3}$sinxcosx.
(1)求函數(shù)f(x)的遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(-1,0),$\overrightarrow$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則向量$\overrightarrow{a}$與$\overrightarrow$ 的夾角為( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷(xiāo)售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得表:
日需求量n89101112
頻數(shù)101015105
①假設(shè)該店在這50天內(nèi)每天購(gòu)進(jìn)10件該商品,求這50天的日利潤(rùn)(單位:元)的平均數(shù);
②若該店一天購(gòu)進(jìn)10件該商品,記“當(dāng)天的利潤(rùn)在區(qū)間[400,550]”為事件A,求P(A)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知平面α截一球面得圓M,過(guò)圓M的圓心的平面β與平面α所成二面角的大小為60°,平面β截該球面得圓N,若該球的表面積為64π,圓M的面積為4π,則圓N的半徑為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=2x+2ax+b且f(-1)=$\frac{5}{2}$,f(0)=2.
(1)求a,b的值; 判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(3)若關(guān)于x的方程mf(x)=2-x在[-1,1]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(cosβ,sinβ),且0<α<β<π,則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案