分析 先求出圓M的半徑,球面的半徑,然后根據(jù)勾股定理求出求出OM的長,找出二面角的平面角,從而求出ON的長,最后利用垂徑定理即可求出圓N的半徑.
解答 解:球的表面積為64π,可得球面的半徑為4.
∵圓M的面積為4π,
∴圓M的半徑為2.
根據(jù)勾股定理可知OM=2$\sqrt{3}$,
∵過圓心M且與α成60°二面角的平面β截該球面得圓N,
∴∠OMN=30°,
在直角三角形OMN中,ON=$\sqrt{3}$,∴圓N的半徑為$\sqrt{13}$.
故答案為$\sqrt{13}$.
點評 本題考查二面角的平面角,以及解三角形知識,同時考查空間想象能力,分析問題解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1365石 | B. | 338石 | C. | 168石 | D. | 134石 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8cm2 | B. | $4\sqrt{3}$ cm2 | C. | 12 cm2 | D. | $4+4\sqrt{3}$ cm2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com