【題目】如圖,三棱柱中ABC﹣A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D為棱AC的中點(diǎn),側(cè)面A1ACC1為邊長為2的菱形,AC⊥CB,BC=1.
(1)證明:AC1⊥平面A1BC;
(2)求三棱錐B﹣A1B1C的體積.
【答案】
(1)證明:∵A1D⊥平面ABC,1D平面A1ACC1,
∴平面1ACC1⊥平面ABC,∵平面A1ACC1∩平面ABC=AC,CA⊥CB,CB平面ABC,
∴BC⊥平面A1ACC1,∵AC1平面A1ACC1,
∴BC⊥AC1,
∵側(cè)面A1ACC1為菱形,∴A1C⊥AC1,
又∵A1C平面A1BC,BC平面A1BC,A1C∩BC=C,
∴AC1⊥平面A1BC,
(2)解:∵AD=1,A1A=2,∴A1D= .
∴ =S△ABCA1D= = .
= = S△ABCA1D= ,
∴ = ﹣ ﹣ = .
【解析】(1)由A1D⊥平面ABC得平面1ACC1⊥平面ABC,于是BC⊥平面A1ACC1 , 推出BC⊥AC1 , 由菱形的性質(zhì)可知A1C⊥AC1 , 于是AC1⊥平面A1BC.(2)三棱錐B﹣A1B1C的體積等于三棱柱的體積減去兩個(gè)棱錐的體積.
【考點(diǎn)精析】關(guān)于本題考查的直線與平面垂直的判定,需要了解一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若不等式的解集為,求的取值范圍;
(2)當(dāng)時(shí),解不等式;
(3)若不等式的解集為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組為了研究人的腳的大小與身高的關(guān)系,隨機(jī)抽測了20位同學(xué),得到如下數(shù)據(jù):
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
身高(厘米) | 192 | 164 | 172 | 177 | 176 | 159 | 171 | 166 | 182 | 166 |
腳長(碼) | 48 | 38 | 40 | 43 | 44 | 37 | 40 | 39 | 46 | 39 |
序號(hào) | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
身高(厘米) | 169 | 178 | 167 | 174 | 168 | 179 | 165 | 170 | 162 | 170 |
腳長(碼) | 43 | 41 | 40 | 43 | 40 | 44 | 38 | 42 | 39 | 41 |
(Ⅰ)請(qǐng)根據(jù)“序號(hào)為5的倍數(shù)”的幾組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅱ)若“身高大于175厘米”的為“高個(gè)”,“身高小于等于175厘米”的為“非高個(gè)”;“腳長大于42碼”的為“大腳”,“腳長小于等于42碼”的為“非大腳”.請(qǐng)根據(jù)上表數(shù)據(jù)完成列聯(lián)表,并根據(jù)列聯(lián)表中數(shù)據(jù)說明能有多大的把握認(rèn)為腳的大小與身高之間有關(guān)系.
附表及公式:,,.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
列聯(lián)表:
高個(gè) | 非高個(gè) | 總計(jì) | |
大腳 | |||
非大腳 | |||
總計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠A=60°,AB= ,將△ABC沿BD折起到△PBD的位置,若平面PBD⊥平面CBD,則三棱錐P﹣BCD的外接球體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于函數(shù)的判斷正確的是( )
①的解集是;②當(dāng)時(shí)有極小值,當(dāng)時(shí)有極大值;
③沒有最小值,也沒有最大值.
A. ①③ B. ①②③ C. ② D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①回歸分析中,相關(guān)指數(shù)的值越大,說明殘差平方和越大;
②對(duì)于相關(guān)系數(shù),越接近1,相關(guān)程度越大,越接近0,相關(guān)程度越;
③有一組樣本數(shù)據(jù)得到的回歸直線方程為,那么直線必經(jīng)過點(diǎn);
④是用來判斷兩個(gè)分類變量是否有關(guān)系的隨機(jī)變量,只對(duì)于兩個(gè)分類變量適合;
以上幾種說法正確的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且(2b﹣a)cosC=ccosA.
(1)求角C的大;
(2)若sinA+sinB=2 sinAsinB,c=3,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線為參數(shù)),為參數(shù)).
(1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若上的點(diǎn)對(duì)應(yīng)的參數(shù)為為上的動(dòng)點(diǎn),求的中點(diǎn)到直線為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應(yīng)的x的取值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com