分析 (1)由f(x)=$\frac{4^x}{{{4^x}+{2}}}$,x∈R.利用函數(shù)性質(zhì)能推導(dǎo)出對(duì)一切實(shí)數(shù)x,f(x)+f(1-x)恒為定值1.
(2)由f(x)+f(1-x)=1,能示出f(-6)+f(-5)+f(-4)+f(-3)+…+f(0)+…+f(6)+f(7)的值.
解答 證明:(1)∵f(x)=$\frac{4^x}{{{4^x}+{2}}}$,x∈R.
∴對(duì)一切實(shí)數(shù)x,
f(x)+f(1-x)=$\frac{{4}^{x}}{{4}^{x}+{2}^{\;}}$+$\frac{{4}^{1-x}}{{4}^{1-x}+{2}^{\;}}$
=$\frac{{4}^{x}}{{4}^{x}+{2}^{\;}}+\frac{4}{4+2•{4}^{x}}$=$\frac{4^x}{{{4^x}+{2}}}$+$\frac{2}{2+{4}^{x}}$=1,
∴對(duì)一切實(shí)數(shù)x,f(x)+f(1-x)恒為定值1.
解:(2)∵f(x)+f(1-x)=1,
∴f(-6)+f(-5)+f(-4)+f(-3)+…+f(0)+…+f(6)+f(7)
=[f(-6)+f(7)]+[f(-5)+f(6)]+[f(-4)+f(5)]+[f(-3)+f(4)]
+[f(-2)+f(3)]+[f(-1)+f(2)]+[f(0)+f(1)]
=1+1+1+1+1+1+1=7.
點(diǎn)評(píng) 本題考查函數(shù)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x-1,g(x)=$\frac{x^2}{x}$-1 | B. | f(x)=2x-1,g(x)=2x+1 | ||
C. | f(x)=x2,g(x)=$\root{3}{{x}^{6}}$ | D. | f(x)=1,g(x)=x0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,b,0) | B. | (a,0,0) | C. | (0,0,c) | D. | (0,b,c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2 | B. | y=ex | C. | y=log0.5|x| | D. | y=sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com