【題目】已知函數(shù)恰有3個零點,則實數(shù)的取值范圍為( )
A. B. C. D.
【答案】A
【解析】,在上單調(diào)遞減.若,則在上遞增,那么零點個數(shù)至多有一個,不符合題意,故.故需當時,且,使得第一段有一個零點,故.對于第二段, ,故需在區(qū)間有兩個零點, ,故在上遞增,在上遞減,所以,解得.綜上所述,
【點睛】本小題主要考查函數(shù)的圖象與性質(zhì),考查含有參數(shù)的分段函數(shù)零點問題的求解策略,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,極值,最值等基本問題.其中用到了多種方法,首先對于第一段函數(shù)的分析利用了分離常數(shù)法,且直接看出函數(shù)的單調(diào)性.第二段函數(shù)利用的是導(dǎo)數(shù)來研究圖像與性質(zhì).
【題型】單選題
【結(jié)束】
13
【題目】設(shè), 滿足約束條件,則的最大值為_______.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐PABC中,PA⊥底面ABC,∠BAC=90°.點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(1)求證:MN∥平面BDE;
(2)求二面角CEMN的正弦值;
(3)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .
(Ⅰ)證明: ;
(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】【試題分析】(I) 取的中點為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進而求得面積.
【試題解析】
證明:(Ⅰ)取的中點為,連接,,
∵為等邊三角形,∴.
底面中,可得四邊形為矩形,∴,
∵,∴平面,
∵平面,∴.
又,所以.
(Ⅱ)由面面,,
∴平面,所以為棱錐的高,
由,知,
,
∴.
由(Ⅰ)知,,∴.
.
由,可知平面,∴,
因此.
在中,,
取的中點,連結(jié),則,,
∴ .
所以棱錐的側(cè)面積為.
【題型】解答題
【結(jié)束】
20
【題目】已知圓經(jīng)過橢圓: 的兩個焦點和兩個頂點,點, , 是橢圓上的兩點,它們在軸兩側(cè),且的平分線在軸上, .
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)滿足下列條件:當時,的最小值為0,且成立;當時,恒成立.
(1)求的解析式;
(2)若對,不等式恒成立、求實數(shù)的取值范圍;
(3)求最大的實數(shù),使得存在實數(shù),只要當時,就有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三統(tǒng)考結(jié)束后,分別從喜歡數(shù)學(xué)和不喜歡數(shù)學(xué)的學(xué)生中各隨機抽取了10人的成績,分數(shù)都是整數(shù),得到如下莖葉圖,但是喜歡數(shù)學(xué)和不喜歡數(shù)學(xué)的各缺失了一個數(shù)據(jù).若已知不喜歡數(shù)學(xué)的10人成績的中位數(shù)為75,且已知喜歡數(shù)學(xué)的10人中所缺失成績是85分以上,但是不高于喜歡數(shù)學(xué)的10人的平均分.不喜歡數(shù)學(xué)和喜歡數(shù)學(xué)缺失的數(shù)據(jù)分別是____,____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為落實國家“精準扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬元研發(fā)資金,用于蔬菜的種植及開發(fā),并計劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長.
(1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬元)與的函數(shù)關(guān)系式,并指出函數(shù)的定義域
(2)該企業(yè)從第幾年開始(2018年為第一年),每年投入的資金數(shù)將超過200萬元?(參考數(shù)據(jù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,E為DC的中點,F為線段EC上一動點.現(xiàn)將△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD內(nèi)過點D作DK⊥AB,K為垂足.設(shè)AK=t,則t的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若關(guān)于的方程只有一個實數(shù)解,求實數(shù)的取值范圍;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com