如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明:PC⊥AD;
(2)求二面角A-PC-D的正弦值;
(3)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

【答案】分析:解法一(1)以A為原點(diǎn),建立空間直角坐標(biāo)系,通過(guò)得出=0,證出PC⊥AD.
(2)求出平面PCD,平面PCD的一個(gè)法向量,利用兩法向量夾角求解.
(3)設(shè)E(0,0,h),其中h∈[0,2],利用cos<>=cos30°=,得出關(guān)于h的方程求解即可.
解法二:(1)通過(guò)證明AD⊥平面PAC得出PC⊥AD.
(2)作AH⊥PC于點(diǎn)H,連接DH,∠AHD為二面角A-PC-D的平面角.在RT△DAH中求解
(3)因?yàn)椤螦DC<45°,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF,故∠EBF(或其補(bǔ)角)為異面直線BE與CD所成的角.在△EBF中,因?yàn)镋F<BE,從而∠EBF=30°,由余弦定理得出關(guān)于h的方程求解即可.
解答:解法一:如圖,以A為原點(diǎn),建立空間直角坐標(biāo)系,則A(0,0,0),D(2,0,0),C(0,1,0),B(-,,0),P(0,0,2).
(1)證明:易得=(0,1,-2),=(2,0,0),于是=0,所以PC⊥AD.
(2)解:=(0,1,-2),=(2,-1,0),設(shè)平面PCD的一個(gè)法向量為=(x,y,z),則
取z=1,則以=(1,2,1).又平面PAC的一個(gè)法向量為=(1,0,0),于是cos<>==,sin<>=
所以二面角A-PC-D的正弦值為
(3)設(shè)E(0,0,h),其中h∈[0,2],由此得=( ,-,h).由=(2,-1,0),故cos<>===
所以=cos30°=,解得h=,即AE=

解法二:(1)證明:由PA⊥平面ABCD,可得PA⊥AD,
又由AD⊥AC,PA∩AC=A,故AD⊥平面PAC,
又PC?平面PAC,
所以PC⊥AD.
(2)解:如圖,作AH⊥PC于點(diǎn)H,連接DH,

由PC⊥AD,PC⊥AH,可得PC⊥平面ADH,因此DH⊥PC,從而∠AHD為二面角A-PC-D的平面角.
在RT△PAC中,PA=2,AC=1,所以AH=,由(1)知,AD⊥AH,在RT△DAH中,DH==,因此sin∠AHD==.所以二面角A-PC-D的正弦值為
(3)解:如圖,因?yàn)椤螦DC<45°,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,
設(shè)交點(diǎn)為F,連接BE,EF,故∠EBF(或其補(bǔ)角)為異面直線BE與CD所成的角.
由于BF∥CD,故∠AFB=∠ADC,在RT△DAC中,CD=,sin=∠ADC=,故sin∠AFB=
在△AFB中,由,AB=,sin∠FAB=sin135°=,可得BF=,
由余弦定理,BF2=AB2+AF2-2ABAFcos∠FAB,得出AF=,
設(shè)AE=h,在RT△EAF中,EF==,
在RT△BAE中,BE==,
在△EBF中,因?yàn)镋F<BE,從而∠EBF=30°,
由余弦定理得到,cos30°=
解得h=,
即AE=
點(diǎn)評(píng):本題考查線面關(guān)系,直線與直線所成的角、二面角等基礎(chǔ)知識(shí),考查思維能力、空間想象能力,并考查應(yīng)用向量知識(shí)解決數(shù)學(xué)問(wèn)題能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案