【題目】在平面直角坐標(biāo)系O中,直線(xiàn)與拋物線(xiàn)=2相交于A、B兩點(diǎn).
(1)求證:命題“如果直線(xiàn)過(guò)點(diǎn)T(3,0),那么=3”是真命題;
(2)寫(xiě)出(1)中命題的逆命題,判斷它是真命題還是假命題,并說(shuō)明理由.
【答案】(1)見(jiàn)解析;
(2)見(jiàn)解析.
【解析】
(1)直線(xiàn)方程與拋物線(xiàn)方程聯(lián)立,消去后利用韋達(dá)定理判斷的值是否為3,從而確定此命題是否為真命題;
(2)根據(jù)四種命題之間的關(guān)系寫(xiě)出該命題的逆命題,然后再利用直線(xiàn)與拋物線(xiàn)的位置關(guān)系知識(shí)來(lái)判斷其真假.
(1)證明:設(shè)過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于點(diǎn),
當(dāng)直線(xiàn)的斜率不存在時(shí),直線(xiàn)的方程為,
此時(shí),直線(xiàn)與拋物線(xiàn)相交于,
所以,
當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)的方程為,其中,
,得,
則,
又因?yàn)?/span>,
所以,
綜上所述,命題“如果直線(xiàn)過(guò)點(diǎn)T(3,0),那么=3”是真命題;
(2)逆命題是:“設(shè)直線(xiàn)與拋物線(xiàn)=2相交于A、B兩點(diǎn),如果=3,那么該直線(xiàn)過(guò)點(diǎn)”,該命題是假命題,
例如:取拋物線(xiàn)上的點(diǎn),此時(shí)=3,直線(xiàn)AB的方程為,而T(3,0)不在直線(xiàn)AB上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某城市有一條從正西方AO通過(guò)市中心O后向東北OB的公路,現(xiàn)要修一條地鐵L,在OA,OB上各設(shè)一站A,B,地鐵在AB部分為直線(xiàn)段,現(xiàn)要求市中心O與AB的距離為,設(shè)地鐵在AB部分的總長(zhǎng)度為.
按下列要求建立關(guān)系式:
設(shè),將y表示成的函數(shù);
設(shè),用m,n表示y.
把A,B兩站分別設(shè)在公路上離中心O多遠(yuǎn)處,才能使AB最短?并求出最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Sn為等差數(shù)列{an}的前n項(xiàng)和,a4=2,S6=18.
(1)求an;
(2)設(shè)Tn=|a1|+|a2|+…+|an|,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l的參數(shù)方程為為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為.
求曲線(xiàn)C的直角坐標(biāo)方程與直線(xiàn)l的極坐標(biāo)方程;
Ⅱ若直線(xiàn)與曲線(xiàn)C交于點(diǎn)不同于原點(diǎn),與直線(xiàn)l交于點(diǎn)B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱錐O﹣ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線(xiàn)BE與AC所成角的余弦值;
(2)求直線(xiàn)BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組在科學(xué)館的帕斯卡三角儀器前進(jìn)行探究實(shí)驗(yàn).如圖所示,每次使一個(gè)實(shí)心小球從帕斯卡三角儀器的頂部入口落下,當(dāng)它在依次碰到每層的菱形擋板時(shí),會(huì)等可能地向左或者向右落下,在最底層的7個(gè)出口處各放置一個(gè)容器接住小球,該小組連續(xù)進(jìn)行200次試驗(yàn),并統(tǒng)計(jì)容器中的小球個(gè)數(shù)得到柱狀圖:
(Ⅰ)用該實(shí)驗(yàn)來(lái)估測(cè)小球落入4號(hào)容器的概率,若估測(cè)結(jié)果的誤差小于,則稱(chēng)該實(shí)驗(yàn)是成功的.試問(wèn):該興趣小組進(jìn)行的實(shí)驗(yàn)是否成功?(誤差)
(Ⅱ)再取3個(gè)小球進(jìn)行試驗(yàn),設(shè)其中落入4號(hào)容器的小球個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.(計(jì)算時(shí)采用概率的理論值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l和平面,若直線(xiàn)l在空間中任意放置,則在平面內(nèi)總有直線(xiàn)和
A.垂直B.平行C.異面D.相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的函數(shù)及如下的4個(gè)命題:
關(guān)于x的方程有個(gè)不同的零點(diǎn);
對(duì)于實(shí)數(shù),不等式恒成立;
在上,方程有5個(gè)零點(diǎn);
時(shí),函數(shù)的圖象與x軸圖成的形的面積是4.
則以上命題正確的為______把正確命題前的序號(hào)填在橫線(xiàn)上
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線(xiàn),某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉(cāng)庫(kù),設(shè),并在公路北側(cè)建造邊長(zhǎng)為的正方形無(wú)頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉(cāng)庫(kù)A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關(guān)于的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬(wàn)元/km,兩條道路造價(jià)為30萬(wàn)元/km,問(wèn):取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com