在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠BAD=90°,AB=AD=1,PD=
3
,CD=2.
(Ⅰ)求證:BC⊥平面PBD;
(Ⅱ)點(diǎn)E是線段PC上的一個(gè)動(dòng)點(diǎn),二面角E-BA-D的大小是否可以為30°?若可以,求出線段PE的長(zhǎng).
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)由線面垂直得PD⊥BC,由勾股定理的逆定理得CB⊥BD,由此能證明BC⊥平面PBD.
(Ⅱ)建立空間直角坐標(biāo)系,利用向量法能求出二面角E-BA-D的大小可以為30°,線段PE的長(zhǎng)為
2
7
3
解答: (Ⅰ)證明:∵PD⊥底面ABCD,∴PD⊥BC.…(2分)
在直角梯形ABCD中,∠BAD=90°,AB=AD=1,
BD=
2
,BC2=(CD-AB)2+AD2=2,
在△CBD中,由勾股定理的逆定理知,
△CBD是直角三角形,且CB⊥BD.…(4分)
∵PD⊥BC,BC⊥BD,BD∩PD=D,
∴BC⊥平面PBD.…(5分)
(Ⅱ)解:建立如圖所示的空間直角坐標(biāo)系.
D(0,0,0)、P(0,0,
3
)
、A(0,1,0)、B(1,1,0)、C(2,0,0).…(6分)
平面BAD的一個(gè)法向量為
m
=(0,0,1)
,…(7分)
設(shè)
PE
PC
(0≤λ≤1),則E(2λ,0,
3
-
3
λ)
,
AB
=(1,0,0)
AE
=(2λ,-1,
3
-
3
λ)
,
設(shè)平面EBA的一個(gè)法向量為
n
=(x,y,z)
,
n
AB
=x=0
n
AE
=2λx-y+(
3
-
3
λ)z=0
,
取z=1,得
n
=(0,
3
-
3
λ,1)
,
∵二面角E-BA-D的大小為30°,
∴cos30°=cos<
n
,
m
>=
1
(
3
-
3
λ)2+1

解得λ=
2
3
,…(10分)
|PE|=
7
λ
=
2
7
3
.…(12分)
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查角能否為30°的判斷與求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“交通指數(shù)”是反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值.交通指數(shù)的取值范圍為0至10,分為5個(gè)等級(jí):其中[0,2)為暢通,[2,4)為基本暢通,[4,6)為輕度擁堵,[6,8)為中度擁堵,[8,10]為嚴(yán)重?fù)矶拢砀叻鍟r(shí)段,某市交通指揮中心選取了市區(qū)60個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻數(shù)分布表及頻率分布直方圖如圖所示:
交通指數(shù)   頻數(shù)  頻率
[0,2)    m1n1
[2,4)    m2n2
[4,6)    150.25
[6,8)    180.3
[8,10]    120.2
(Ⅰ)求頻率分布表中所標(biāo)字母的值,并補(bǔ)充完成頻率分布直方圖;
(Ⅱ)用分層抽樣的方法從交通指數(shù)在[0,2)和[2,4)的路段中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中隨機(jī)抽出2個(gè)路段,求至少有一個(gè)路段為暢通的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:
lim
n→+∞
(1+
1
n
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)都是正數(shù)的等比數(shù)列{an}中,a3=8,a5=32.
(1)求an的表達(dá)式;
(2)若bn=2+log2an,求b1,b2,b3;
(3)數(shù)列{bn}的前n項(xiàng)和為Sn,求滿足Sn≤25的最大整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1,M為AB中點(diǎn),D在A1B1上且A1D=3DB1
(1)求證:平面CMD⊥平面ABB1A1;
(2)求二面角C-BD-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:ln(x-2)<0,Q:(x-a)(x-3a<0),(a>0),若命題P是 Q 的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)Q(-1,
2
2
),且離心率e=
2
2

(1)求橢圓C的方程;
(2)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)在直線x+2y=1上時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐P-ABCD中,AB∥CD,AB=
1
2
DC=1,BP=BC=
2
,PC=2,AB⊥平面PBC,F(xiàn)為PC中點(diǎn).
(Ⅰ)求證:BF∥平面PAD;
(Ⅱ)求證:平面ADP⊥平面PDC;
(Ⅲ)求VP-ABCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三條直線a,b,c及平面α,β,則下列命題中,正確的命題序號(hào)是
 

①若b?α,a∥b,則a∥α
②若a∥α,α∩β=b,則 a∥b
③若a⊥α,b⊥α,則a∥b
④若a?α,b?α,l⊥a,l⊥b,則l⊥α

查看答案和解析>>

同步練習(xí)冊(cè)答案