已知在半徑為2的球面上有A、B、C、D四點,若AB=CD=2,則四面體ABCD的體積的最大值為( )
A.
B.
C.
D.
【答案】分析:四面體ABCD的體積的最大值,AB與CD是對棱,必須垂直,確定球心的位置,即可求出體積的最大值.
解答:解:過CD作平面PCD,使AB⊥平面PCD,交AB與P,設點P到CD的距離為h,
則有,
當直徑通過AB與CD的中點時,,故
故選B.
點評:本小題主要考查幾何體的體積的計算、球的性質(zhì)、異面直線的距離,通過球這個載體考查考生的空間想象能力及推理運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點在半徑為1的球面上,且AB=1,BC=
3
.若A、C兩點的球面距離為
π
2
,則球心O到平面ABC的距離為(  )
A、
1
4
B、
2
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B是球心為O的球面上的兩點,在空間直角坐標系中,他們的坐標分別為O(0,0,0)、A(
2
,-1,1)、B(0,
2
,
2
).
求(1)球的半徑R (2)
OA
OB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設圓錐的母線長為1,試問圓錐的底面半徑   為多少時,圓錐的體積最大?

(2)圓錐內(nèi)有一半球,球面與圓錐側(cè)面相切,半球的底面在圓錐的底面上,已知半球半徑為r,圓錐的母線與底面所成的角為θ,求當圓錐的體積V圓錐=f(θ)最小時,圓錐的高h的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設圓錐的母線長為1,試問圓錐的底面半徑為多少時,圓錐的體積最大?

(2)圓錐內(nèi)有一半球,球面與圓錐側(cè)面相切,半球的底面在圓錐的底面上,已知半球半徑為R,圓錐的母線與底面所成的角為θ,求當圓錐的體積V圓錐=f(θ)最小時,圓錐的高h的值.

圖1-1-4

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年云南師大附中高考適應性月考(七)理科數(shù)學試卷(解析版) 題型:選擇題

已知在半徑為2的球面上有、、四點,若,則四面體的體積的取值范圍是

A.        B.        C.        D.

 

查看答案和解析>>

同步練習冊答案