“點M在曲線y2=4x上”是“點M的坐標(biāo)滿足方程y=-2數(shù)學(xué)公式”的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充要條件
  4. D.
    既不充分又不必要條件
B
分析:直接利用充要條件的判定方法,判斷即可.
解答:“點M的坐標(biāo)滿足方程y=-2”?“點M在曲線y2=4x上”;
“點M在曲線y2=4x上”不一定滿足“點M的坐標(biāo)滿足方程y=-2”.
所以“點M在曲線y2=4x上”是“點M的坐標(biāo)滿足方程y=-2”的必要不充分條件.
故選B.
點評:判斷充要條件的方法是:
①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;
②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;
③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;
④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)從圓x2+y2=4上任意一點P作x軸的垂線,垂足為Q,點M在線段PQ上,且
QM
QP
(0<λ<1)

(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)如果點A(-3,4)關(guān)于直線y=x+4的對稱點B在曲線C上,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點M是曲線C上任意一點,它到F(4,0)的距離比它到直線x+2=0的距離大2,且P(2m,m)(m>0),A(x1,y1),B(x2,y2)均在曲線C上.
(1)寫出該曲線C的方程及 m的值;
(2)當(dāng)PA與PB的斜率存在且傾斜角互補時,求y1+y2的值及直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點N在圓x2+y2=4上運動,DN⊥x軸,點M在DN的延長線上,且
DM
DN
(λ>0).
(1)求點M的軌跡方程,并求當(dāng)λ為何值時M的軌跡表示焦點在x軸上的橢圓;
(2)當(dāng)λ=
1
2
時,(1)所得曲線記為C,已知直線l:
x
2
+y=1
,P是l上的動點,射線OP(O為坐標(biāo)原點)交曲線C于點R,又點Q在OP上且滿足|OQ|•|OP|=|OR|2,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點M的極坐標(biāo)為(4
2
,
π
4
)
,曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實數(shù)a,b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點M的極坐標(biāo)為(4
2
,
π
4
),曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實數(shù)a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

同步練習(xí)冊答案