如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到A1DE的位置,使A2C⊥CD,如圖2.
(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點,求CM與平面A1BE所成角的大。
考點:直線與平面所成的角,直線與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(1)由已知得DE⊥平面A1CD,A1C⊥DE,由此能證明A1C⊥平面BCDE.
(2)以C為原點,CB為y軸,CA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出CM與平面A1BE所成角.
解答: (1)證明:∵CD⊥DE,A1D⊥DE,
∴DE⊥平面A1CD,又∵A1C?平面A1CD,
∴A1C⊥DE,∵A1C⊥CD,
∴A1C⊥平面BCDE.
(2)解:以C為原點,CB為y軸,CA為z軸,
建立如圖所示的空間直角坐標(biāo)系,
則D(-2,0,0),A1(0,0,2
3
),B(0,3,0),
E(-2,2,0),
A1B
=(0,3,-2
3
),
BE
=(-2,-1,0),
設(shè)平面A1BE的法向量
n
=(x,y,z),
A1B
n
=3y-2
3
z=0
BE
n
=-2x-y=0
,取x=-1,得
n
=(-1,2,
3
),
M(-1,0,
3
),
CM
=(-1,0,
3
)
,
cosθ=
CM
n
|
CM
|•|
n
|
=
4
2•2
2
=
2
2

∴CM與平面A1BE所成角為45°.
點評:本題考查空間線面關(guān)系、幾何體的體積等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運算求解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在雙曲線
x2
4
-
y2
12
=1的右支上求一點 P,使它到左焦點的距離是它到右準(zhǔn)線距離的4倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1-t,1-t,t),
b
=(2,t,t),則|
b
-
a
|的最小值是(  )
A、
5
5
B、
55
5
C、
3
5
5
D、
11
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點P是曲線y=x2-lnx任意一點,則點P到直線y=x-2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),當(dāng)x∈[-1,1]時,f(x)=x2,函數(shù)g(x)=
loga(x-1)x>1
2xx≤1
,若函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上恰有8個零點,則a的取值范圍為
( 。
A、(2,4)
B、(2,5)
C、(1,5)
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,點P(m,0),O為坐標(biāo)原點,若在拋物線C上存在一點Q,使得∠OQP=90°,則實數(shù)m的取值范圍是( 。
A、(4,8)
B、(4,+∞)
C、(0,4)
D、(8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是平行四邊形,PA⊥平面ABCD,AC⊥AB,點E是PD的中點.
(I)求證:PB⊥AC;
(Ⅱ)求證:PB∥平面ACE;
(Ⅲ)求三棱錐E-ABC與四棱錐P-ABCD的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sin(x-3π)cos(x+
π
2
)
tan(π-x)
+sin(2x+
π
3
).
(1)求f(
π
12
)的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
ax
e2x
+b,其中a>0,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)在點(0,f(0))處的切線為直線l,證明:f(x)=
ax
e2x
+b的圖象恒在切線l的下方(除切點外).
(2)當(dāng)a=1,設(shè)函數(shù)F(x)=f(x)-|lnx|,若?x0∈(0,+∞),使得F(x0)=0,求實數(shù)b的最小值.

查看答案和解析>>

同步練習(xí)冊答案