【題目】人的眼皮有單眼皮與雙眼皮之分,這是由對應(yīng)的基因決定的.生物學(xué)上已經(jīng)證明:決定眼皮單雙的基因有兩種,一種是顯性基因(記為),另一種是隱性基因(記為);基因總是成對出現(xiàn)(如、、、),而成對的基因中,只要出現(xiàn)了顯性基因,那么這個(gè)人就一定是雙眼皮(也就是說,“單眼皮”的充要條件是“成對的基因是”);如果不發(fā)生基因突變的話,成對的基因中,一個(gè)來自父親,另一個(gè)來自母親,但父母親提供基因時(shí)都是隨機(jī)的.有一對夫妻,兩人成對的基因都是,不考慮基因突變,求他們的孩子是單眼皮的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,底面是邊長為2的正三角形,側(cè)棱長為,為的中點(diǎn)
(1)若,證明:平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】因客流量臨時(shí)增大,某鞋店擬用一個(gè)高為50(即)的平面鏡自制一個(gè)豎直擺放的簡易鞋鏡,根據(jù)經(jīng)驗(yàn):一般顧客的眼睛到地面的距離為()在區(qū)間內(nèi),設(shè)支架高為(),,顧客可視的鏡像范圍為(如圖所示),記的長度為().
(I)當(dāng)時(shí),試求關(guān)于的函數(shù)關(guān)系式和的最大值;
(II)當(dāng)顧客的鞋在鏡中的像滿足不等關(guān)系(不計(jì)鞋長)時(shí),稱顧客可在鏡中看到自己的鞋,若使一般顧客都能在鏡中看到自己的鞋,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機(jī)取兩個(gè)球,求取出的球的編號之和不大于4的概率;
(2)先從袋中隨機(jī)取一個(gè)球,該球的編號為m,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,求n≥m+2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)不透明的箱子,每個(gè)箱子都裝有4個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.
(1)甲從其中一個(gè)箱子中摸出一個(gè)球,乙從另一個(gè)箱子摸出一個(gè)球,誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;
(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字相同甲獲勝,所標(biāo)數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解高校學(xué)生平均每天使用手機(jī)的時(shí)間長短是否與性別有關(guān),某調(diào)查小組隨機(jī)抽取了25 名男生、10名女生進(jìn)行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如表所示:
平均每天使用手機(jī)小時(shí) | 平均每天使用手機(jī)小時(shí) | 合計(jì) | |
男生 | 15 | 10 | 25 |
女生 | 3 | 7 | 10 |
合計(jì) | 18 | 17 | 35 |
(I)在參與調(diào)查的平均每天使用手機(jī)不超過3小時(shí)的7名女生中,有4人使用國產(chǎn)手機(jī),從這7名女生中任意選取2人,求至少有1人使用國產(chǎn)手機(jī)的概率;
(II) 根據(jù)列聯(lián)表,是否有90%的把握認(rèn)為學(xué)生使用手機(jī)的時(shí)間長短與性別有關(guān)(的觀測值精確到0.01).
附:
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在給出的下列命題中,正確的是( )
A.設(shè)是同一平面上的四個(gè)點(diǎn),若,則點(diǎn)必共線
B.若向量是平面上的兩個(gè)向量,則平面上的任一向量都可以表示為,且表示方法是唯一的
C.已知平面向量滿足則為等腰三角形
D.已知平面向量滿足,且,則是等邊三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年提出,任意三角形的外心、重心、垂心位于同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn)A(2,0),B(0,4),若其歐拉線的方程為x-y+2=0,則頂點(diǎn)C的坐標(biāo)為
A. (-4,0) B. (-3,-1) C. (-5,0) D. (-4,-2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com