(本小題滿分16分)

已知數(shù)列單調(diào)遞增,且各項非負.對于正整數(shù),若任意的,仍是中的項,則稱數(shù)列為“項可減數(shù)列”.

(Ⅰ)已知數(shù)列是首項為2,公比為2的等比數(shù)列,且數(shù)列是“項可減數(shù)列”,試確定的最大值.

(Ⅱ)求證:若數(shù)列是“項可減數(shù)列”,則其前項的和.

(Ⅲ)已知是各項非負的遞增數(shù)列,寫出(Ⅱ)的逆命題,判斷該逆命題的真假,并說明理由.

(Ⅰ) 解:設(shè),則,

   易得,   即數(shù)列一定是“2項可減數(shù)列” …………………2分

   但因為,所以的最大值為2……………………………………4分

(Ⅱ)證明:因為數(shù)列是“項可減數(shù)列”,所以必定是數(shù)列中的項,

是遞增數(shù)列,,

所以必有………………………………6分

 故

, 所以,即……………………………8分

又由定義知,數(shù)列也是“t項可減數(shù)列”(),

所以…………………………………………………………………………… 9分

(Ⅲ)解:(Ⅱ)的逆命題為:已知數(shù)列為各項非負的遞增數(shù)列,若其前項的和滿足

,則該數(shù)列一定是“項可減數(shù)列” ………………………………………10分

該逆命題為真命題…………………………………………………………………………………………11分

理由如下:因為,所以當時,,兩式相減,

,即 (*) …………………………12分

則當時,有  (**),由(**)-(*),得……………13分

,所以,故數(shù)列是首項為0的遞增等差數(shù)列………………………… 14分

設(shè)公差為,則

對于任意的,……………………………………………15分

因為,所以仍是中的項,故數(shù)列是“項可減數(shù)列”……16分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設(shè)過點T()的直線TA、TB與橢圓分別交于點M、,其中m>0,。

(1)設(shè)動點P滿足,求點P的軌跡;

(2)設(shè),求點T的坐標;

(3)設(shè),求證:直線MN必過x軸上的一定點(其坐標與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學 來源:2010年泰州中學高一下學期期末測試數(shù)學 題型:解答題

(本小題滿分16分)
函數(shù),(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意時,恒成立,求實數(shù)的范圍;
(Ⅲ)如果,當“對任意恒成立”與“內(nèi)必有解”同時成立時,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇大豐新豐中學高二上期中考試文數(shù)學試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;

(總開發(fā)費用=總建筑費用+購地費用)

(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省蚌埠市高二下學期期中聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分16分)設(shè)命題:方程無實數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高一第三階段檢測數(shù)學卷 題型:解答題

(本小題滿分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對稱軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標延長到原來的4倍,縱坐標不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

同步練習冊答案