1. (本小題滿分13分)
某商場準(zhǔn)備在國慶節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該商場決定從2種服裝商品,2種家電商品,3種日用商品中,選出3種商品進(jìn)行促銷活動.
(1) 試求選出的3種商品中至少有一種是日用商品的概率;
(2) 商場對選出的某商品采用的促銷方案是有獎(jiǎng)銷售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高150元,同時(shí),若顧客購買該商品,則允許有3次抽獎(jiǎng)的機(jī)會,若中獎(jiǎng),則每次中獎(jiǎng)都獲得數(shù)額為的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否的概率都是,請問:商場應(yīng)將每次中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷方案對商場有利?
(1)(2)100
【解析】(1) 從2種服裝商品,2種家電商品,3種日用商品中,選出3種商品一共有種選法,選出的3種商品中沒有日用商品的選法有種, 所以選出的3種商品中至少有一種日用商品的概率為. 4分
(2) 顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額是一隨機(jī)變量,
設(shè)為X,其所有可能值為0,,2,3········································ 6分
X=0時(shí)表示顧客在三次抽獎(jiǎng)中都沒有獲獎(jiǎng),
所以······················································ 7分
同理可得·············································· 8分
························································· 9分
······················································ 10分
于是顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額的期望值是
··································· 12分
要使促銷方案對商場有利,應(yīng)使顧客獲獎(jiǎng)獎(jiǎng)金總額的期望值不大于商場的提價(jià)數(shù)額,因此應(yīng)有,所以,··········································································· 13分
故商場應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為100元,才能使促銷方案對商場有利. 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com