精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知直四棱柱ABCD—A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A為直角,AB∥CD,AB=4,AD=2,DC=2.

(Ⅰ)求線段BC1的長度;

(Ⅱ)異面直線BC1與DC所成角的余弦值.

【答案】(1) (2)

【解析】試題分析:(1)D為坐標原點,以DA、DC、DD1所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系.求出點的坐標,從而得到線段BC1的長度;

(2)求出兩條直線的方向向量,代入公式即可.

試題解析:

(I)以D為坐標原點,以DA、DC、DD1所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系.

A(2,0,0),B(2,4,0),C(0,2,0),C1(0,2,2),

=(0,2,0),=(-2,-2,2),||=2,

(II)由(I)可知,=(0,2,0),=(-2,-2,2)

cos〉=

異面直線DCBC1所成的角的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓離心率等于,P(2,3)、Q(2,﹣3)是橢圓上的兩點.

(1)求橢圓C的方程;

(2)A,B是橢圓上位于直線PQ兩側的動點,若直線AB的斜率為,求四邊形APBQ面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.

(1)求證:AD⊥PB;

(2)已知點M是線段PC上,MC=λPM,且PA平面MQB,求實數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=16,BC=10AA1=8,點E,F分別在A1B1,D1C1上,A1E=D1F=4,過點E,F的平面α與此長方體的面相交,交線圍成一個正方形.

1)在圖中畫出這個正方形(不必說明畫法和理由);

2)求直線AF與平面α所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在上的奇函數.

(Ⅰ)求的值;

(Ⅱ)判斷在定義域上的單調性并加以證明;

(Ⅲ)若對于任意的,不等式恒成立, 求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P為橢圓C: =1(a>b>0)的下頂點,M,N在橢圓上,若四邊形OPMN為平行四邊形,α為直線ON的傾斜角,若α∈( ],則橢圓C的離心率的取值范圍為( )
A.(0, ]
B.(0, ]
C.[ , ]
D.[ , ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】半徑為2的球O內有一內接正四棱柱(底面是正方形,側棱垂直底面),當該正四棱柱的側面積最大時,球的表面積與該四棱柱的側面積之差是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=mlnx﹣x2+2(m∈R).
(1)當m=1時,求f(x)的單調區(qū)間;
(2)若f(x)在x=1時取得極大值,求證:f(x)﹣f′(x)≤4x﹣3;
(3)若m≤8,當x≥1時,恒有f(x)﹣f′(x)≤4x﹣3恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=e2x+ln(x+a).
(1)當a=1時,①求f(x)在(0,1)處的切線方程;②當x≥0時,求證:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案