精英家教網 > 高中數學 > 題目詳情

求值:(1) 
(2)

(1);(2) .

解析試題分析:(1)先將分數化成假分數,在利用有理數指數冪運算進行計算,例如:,;
(2)根據對數的運算性質化簡,例如:,再提取公因式化簡.
試題解析:(1) 
=
===
(2) 
=
= 
=
=
考點:1、有理數指數冪的運算性質;2、對數的運算性質.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某公司試銷一種成本單價為500元/件的新產品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元/件.經試銷調查,發(fā)現銷售量(件)與銷售單價(元/件)可近似看作一次函數的關系(如圖所示).

(1)根據圖象,求一次函數的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價—成本總價)為元. 試用銷售單價表示毛利潤并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某地方政府準備在一塊面積足夠大的荒地上建一如圖所示的一個矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域將鋪設塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為平方米.

(1)分別寫出用表示和用表示的函數關系式(寫出函數定義域);
(2)怎樣設計能使S取得最大值,最大值為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是偶函數。
(1)求的值;
(2)設函數,其中實數。若函數的圖象有且只有一個交點,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
⑴當時,若函數存在零點,求實數的取值范圍并討論零點個數;
⑵當時,若對任意的,總存在,使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,h(x)=2alnx,.
(1)當a∈R時,討論函數的單調性;
(2)是否存在實數a,對任意的,且,都有
恒成立,若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知點,點在曲線:上.
(1)若點在第一象限內,且,求點的坐標;
(2)求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬元.該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:)滿足關系:,為常數),若不建隔熱層,每年能源消耗費用為萬元.設為隔熱層建造費用與年的能源消耗費用之和.
(1)求的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最小,并求最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為正實數且滿足
(1)求的最大值為;(2)求的最大值.

查看答案和解析>>

同步練習冊答案