【題目】如圖,為測(cè)量山高M(jìn)N,選擇A和另一座山的山頂C為測(cè)量觀測(cè)點(diǎn).從A點(diǎn)測(cè)得 M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°.已知山高BC=100m,則山高M(jìn)N=m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,BC邊上的高所在的直線方程為x﹣2y+1=0,∠A的角平分線所在的直線方程為y=0,點(diǎn)C的坐標(biāo)為(1,2).
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)又過點(diǎn)C作直線l與x軸、y軸的正半軸分別交于點(diǎn)M,N,求△MON的面積最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠隨機(jī)抽取部分工人調(diào)查其上班路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),若上班路上所需時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求直方圖中a的值;
(2)如果上班路上所需時(shí)間不少于1小時(shí)的工人可申請(qǐng)?jiān)诠S住宿,若招工2400人,請(qǐng)估計(jì)所招工人中有多少名工人可以申請(qǐng)住宿;
(3)該工廠工人上班路上所需的平均時(shí)間大約是多少分鐘.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),且,求證: ;
(Ⅲ)設(shè),對(duì)于任意,總存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: (a>0,b>0)過點(diǎn)A(1,0),且離心率為
(1)求雙曲線C的方程;
(2)已知直線x﹣y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是橢圓的長軸與短軸的一個(gè)端點(diǎn), 是橢圓的左、右焦點(diǎn),以點(diǎn)為圓心、3為半徑的圓與以點(diǎn)為圓心、1為半徑的圓的交點(diǎn)在橢圓上,且.
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),直線與軸交于點(diǎn),直線與軸交于點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,把函數(shù)g(x)=f(x)﹣x的零點(diǎn)按從小到大的順序排列成一個(gè)數(shù)列,則該數(shù)列的通項(xiàng)公式為( )
A.
B.an=n﹣1
C.an=n(n﹣1)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個(gè)學(xué)校高三年級(jí)分別有1100人,1000人,為了了解兩個(gè)學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)二?荚嚨臄(shù)學(xué)成績清況,采用分層抽樣方法從兩個(gè)學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
乙校:
(1)計(jì)算的值;
(2)若規(guī)定考試成績?cè)?/span>內(nèi)為優(yōu)秀,請(qǐng)根據(jù)樣本估計(jì)乙校數(shù)學(xué)成績的優(yōu)秀率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為兩個(gè)學(xué)校的數(shù)學(xué)成績有差異.
附: ; .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x1 , x2是方程x2﹣mx﹣1=0的兩個(gè)實(shí)根,且不等式a2+4a﹣3≤|x1﹣x2|對(duì)任意m∈R恒成立;命題q:不等式x2+2x+a<0有解,若命題p∨q為真,p∧q為假,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com