1.cos24°cos36°-sin24°cos54°=(  )
A.cos12°B.sin12°C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 由條件利用誘導(dǎo)公式、兩角和差的余弦公式求得所給式子的值.

解答 解:cos24°cos36°-sin24°cos54°=cos24°cos36°-sin24°sin36°=cos(24°+36°)=cos60°=$\frac{1}{2}$,
故選:C.

點(diǎn)評 本題主要考查誘導(dǎo)公式、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若直線經(jīng)過點(diǎn)(0,3),且斜率為-2,則直線的方程是2x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=3x3+ax+1(a為常數(shù))f(5)=7,則f(-5)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.己知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+2,-1≤k<0}\\{-x+2,0≤x<2}\end{array}\right.$,則不等式f(x)≥log2(x+1)的解集是{x|-1<x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,已知四棱錐S-ABCD的側(cè)棱與底面邊長都是2,且底面ABCD是正方形,則側(cè)棱與底面所成的角( 。
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=ex+e-x(其中e是自然對數(shù)的底數(shù)),若關(guān)于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,則實數(shù)m的取值范圍是(-∞,-$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.集合A={x|x2-3x-10≤0},集合B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求實數(shù)m的取值范圍;
(2)當(dāng)x∈R時,沒有元素x使x∈A與x∈B同時成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式(x-a)(ax-1)<0的解集是$(-∞,\frac{1}{a})∪(a,+∞)$,則實數(shù)a的取值范圍是[-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)將關(guān)于x的不等式|x-3|+|x-4|<2;
(2)如果關(guān)于x的不等式|x-3|+|x-4|<a的解集是空集,求實數(shù)a的取值范圍;
(3)對任意x∈R,|2-x|+|3+x|≥a2-4a恒成立,求a的取值范圍;
(4)已知m∈R,解關(guān)于x的不等式1-x≤|x-m|≤1+x.

查看答案和解析>>

同步練習(xí)冊答案