已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<β<α<π.
(1)若|
a
-
b
|=
2
,求證:
a
b
;
(2)設
c
=(0,1),若
a
+
b
=
c
,求α,β的值.
(1)由
a
=(cosα,sinα),
b
=(cosβ,sinβ),
a
-
b
=(cosα-cosβ,sinα-sinβ),
|
a
-
b
|2=(cosα-cosβ)2+(sinα-sinβ)2
=2-2(cosαcosβ+sinαsinβ)=2,
得cosαcosβ+sinαsinβ=0.
所以
a
b
=0
.即
a
b
;
(2)由
a
+
b
=(cosα+cosβ,sinα+sinβ)=(0,1)

cosα+cosβ=0①
sinα+sinβ=1②
,①2+②2得:cos(α-β)=-
1
2

因為0<β<α<π,所以0<α-β<π.
所以α-β=
2
3
π
,α=
2
3
π+β

代入②得:sin(
2
3
π+β)+sinβ=
3
2
cosβ+
1
2
sinβ=sin(
π
3
+β)=1

因為
π
3
π
3
+β<
4
3
π
.所以
π
3
+β=
π
2

所以,α=
5
6
π,β=
π
6
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義平面向量之間的一種運算“⊙”如下:對任意的向量a=(m,n),b=(p,q),令a⊙b=(m+p,n-q),已知a=(cosθ,3),b=(sinθ,3+
2
sinθ)
(θ∈R),點N(x,y)滿足
ON
=a⊙b(其中O為坐標原點),則|
ON
|2
的最大值為( 。
A、
2
B、2+
2
C、2-
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<α<β<π.
(1)求證:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
b
與k
a
-
b
大小相等,求β-α(k≠0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ).
(1)若α-β=
6
,求
a
b
的值;
(2)若
a
b
=
4
5
,α=
π
8
,且α-β∈(-
π
2
,0)
,求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•朝陽區(qū)一模)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π
(Ⅰ)求|
a
|的值;
(Ⅱ)求證:
a
+
b
a
-
b
互相垂直;
(Ⅲ)設|
a
+
b
|=|
a
-
b
|,求β-α的值.

查看答案和解析>>

同步練習冊答案