【題目】已知函數(shù).

(1)當(dāng),求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上是減函數(shù),求的最小值;

(3)證明:當(dāng)時(shí),.

【答案】(1)單調(diào)遞減區(qū)間是,,單調(diào)遞增區(qū)間是(2)的最小值為(3)見(jiàn)解析

【解析】分析:(1)代入根據(jù)導(dǎo)函數(shù)的符號(hào)判斷函數(shù)的單調(diào)區(qū)間。

(2)由單調(diào)遞減區(qū)間,得到恒成立。進(jìn)而確定只需當(dāng)時(shí),即可,對(duì)導(dǎo)函數(shù)配方,利用二次函數(shù)性質(zhì)求得最大值,進(jìn)而得出的最小值

(3)函數(shù)變形,構(gòu)造函數(shù),求導(dǎo)函數(shù)。構(gòu)造函數(shù),則,根據(jù)導(dǎo)函數(shù)的單調(diào)性求其最值,即可證明不等式。

詳解:函數(shù)的定義域?yàn)?/span>,

詳解:函數(shù)的定義域?yàn)?/span>,

(1)函數(shù),

當(dāng)時(shí),;當(dāng)時(shí),,

所以函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.

(2)因上為減函數(shù),故上恒成立.

所以當(dāng)時(shí),.

,

故當(dāng),即時(shí),.

所以,于是,故的最小值為.

(3)問(wèn)題等價(jià)于.

,則,

當(dāng)時(shí),取最小值.

設(shè),則,知上單調(diào)遞增,在上單調(diào)遞減.

,

,,

故當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(選修4﹣5:不等式選講)
已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線(xiàn)折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒(如圖).設(shè)小正方形邊長(zhǎng)為x厘米,矩形紙板的兩邊AB,BC的長(zhǎng)分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b∈R.若直線(xiàn)l:ax+y﹣7=0在矩陣A= 對(duì)應(yīng)的變換作用下,得到的直線(xiàn)為l′:9x+y﹣91=0.求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l: (t為參數(shù)),與曲線(xiàn)C: (k為參數(shù))交于A,B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若 都是從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù),求上述函數(shù)有零點(diǎn)的概率;

(2)若, 都是從區(qū)間上任取的一個(gè)數(shù),求成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)

(1)若,求不等式的解集;

(2)若對(duì)任意,均存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在上海自貿(mào)區(qū)的利好刺激下,公司開(kāi)拓國(guó)際市場(chǎng),基本形成了市場(chǎng)規(guī)模;自2014年1月以來(lái)的第個(gè)月(2014年1月為第一個(gè)月)產(chǎn)品的內(nèi)銷(xiāo)量、出口量和銷(xiāo)售總量(銷(xiāo)售總量=內(nèi)銷(xiāo)量+出口量)分別為、(單位:萬(wàn)件),依據(jù)銷(xiāo)售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下?tīng)I(yíng)銷(xiāo)趨勢(shì):,(其中,為常數(shù),),已知萬(wàn)件,萬(wàn)件,萬(wàn)件.

(1)求的值,并寫(xiě)出滿(mǎn)足的關(guān)系式;

(2)證明:逐月遞增且控制在2萬(wàn)件內(nèi);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn), ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

同步練習(xí)冊(cè)答案