函數(shù)f(x)=數(shù)學(xué)公式,求f{f[f(3)]}的算法時,下列步驟正確的順序是________.
①由3>0,得f(3)=0
②由-5<0,得f(-5)=25+2=27,即f{f[f(3)]}=27
③由f(0)=-5,得f[f(3)]=f(0)=-5.

①③②
分析:由求f{f[f(3)]}的算法可知,先算f(3),再算f[f(3)],最后計算f{f[f(3)]},共三步,每一步操作明確的,即可判斷正確的步驟.
解答:由求f{f[f(3)]}的算法可知,
第一步:先算f(3),
第二步:算f[f(3)],
第三步:最后計算f{f[f(3)]},共三步.
故答案為:①③②.
點評:本題考查了算法的概念,解決問題最直接的方法就是明確概念,是個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),
(1)若f(-1)=0且對任意實數(shù)x均有f(x)≥0成立,求f(x)表達(dá)式;
(2)在(1)的條件下,若g(x)=f(x)-kx,在區(qū)間[-2,2]上是單調(diào)函數(shù),則實數(shù)k的取值范圍;
(3)在(1)的條件下,F(x)=
f(x) (x>0)
-f(x) (x<0)
,當(dāng)x∈[-2,2]且x≠0時,求F(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:對任意a,b∈R都有f(a+b)=f(a)•f(b),且f(1)=3.
(1)求f(0),f(-1)的值;
(2)若當(dāng)x>0時,有f(x)>1,判斷函數(shù)f(x)的單調(diào)性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+1成立,且當(dāng)x>0時,f(x)>-1,f(1)=0.
(1)求f(5)的值;
(2)判斷f(x)在R上的單調(diào)性,并證明;
(3)若對于任意給定的正實數(shù)ε,總能找到一個正實數(shù)σ,使得當(dāng)|x-x0|<σ時,|f(x)-f(x0)|<ε,則稱函數(shù)f(x)在x=x0處連續(xù).試證明:f(x)在x=0處連續(xù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案