【題目】.極坐標系于直角坐標系有相同的長度單位,以原點為極點,以正半軸為極軸.已知曲線的極坐標方程為,曲線的極坐標方程為,射線,,,與曲線分別交異于極點的四點.

1)若曲線關(guān)于曲線對稱,求的值,并把曲線化成直角坐標方程;

2)設(shè),當時,求的值域.

【答案】1,的直角坐標方程為;的直角坐標方程為;(2.

【解析】

1)由可得進而可求的直角坐標方程; 把的方程化為直角坐標方程為,由題意知,該直線過,則可求出.

2,,,則,結(jié)合則可求出,進而可求值域.

解:(1,即,化為直角坐標方程

.把的方程化為直角坐標方程為.

因為曲線關(guān)于曲線對稱,故直線經(jīng)過圓心

解得,故的直角坐標方程為.

2)由題意可得,當時,

,,

.

時,,則

的值域為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”.三國時期,吳國的數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形中較小的銳角,現(xiàn)在向該正方形區(qū)域內(nèi)隨機地投擲100枚飛鏢,則估計飛鏢落在區(qū)域1的枚數(shù)最有可能是(

A.30B.40C.50D.60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓()的離心率為,以的短軸為直徑的圓與直線相切.

1)求的方程;

2)直線,兩點,且.已知上存在點,使得是以為頂角的等腰直角三角形,若在直線的右下方,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,等腰梯形中,的中點.將沿折起后如圖2,使二面角成直二面角,設(shè)的中點,是棱的中

點.

1)求證:;

2)求證:平面平面;

3)判斷能否垂直于平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)試求函數(shù)零點的個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρ2cos2θ+3sin2θ)=12,直線l的參數(shù)方程為t為參數(shù)),直線l與曲線C交于M,N兩點.

1)若點P的極坐標為(2π),求|PM||PN|的值;

2)求曲線C的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年國慶節(jié)假期期間,某商場為掌握假期期間顧客購買商品人次,統(tǒng)計了1017002300這一時間段內(nèi)顧客購買商品人次,統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)顧客購買商品共5000人次顧客購買商品時刻的的頻率分布直方圖如下圖所示,其中時間段7001100,1100150015001900,19002300,依次記作[7,11),[11,15),[15,19),[19,23].

1)求該天顧客購買商品時刻的中位數(shù)t與平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)由頻率分布直方圖可以近似認為國慶節(jié)假期期間該商場顧客購買商品時刻服從正態(tài)分布Nμ,δ2),其中μ近似為,δ3.6,估計2019年國慶節(jié)假期期間(101日﹣107日)該商場顧客在12121924之間購買商品的總?cè)舜危ńY(jié)果保留整數(shù));

3)為活躍節(jié)日氣氛,該商場根據(jù)題中的4個時間段分組,采用分層抽樣的方法從這5000個樣本中隨機抽取10個樣本(假設(shè)這10個樣本為10個不同顧客)作為幸運客戶,再從這10個幸運客戶中隨機抽取4人每人獎勵500元購物券,其他幸運客戶每人獎勵200元購物券,記獲得500元購物券的4人中在15001900之間購買商品的人數(shù)為X,求X的分布列與數(shù)學期望;

參考數(shù)據(jù):若TNμ,σ2),則①PμσT≤μ+σ)=0.6827;②PμT≤μ+2σ)=0.9545;③PμT≤μ+3σ)=0.9973.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放以來,中國快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務量從上世紀年代的萬件提升到2018年的億件,快遞行業(yè)的發(fā)展也給我們的生活帶來了很大便利.已知某市某快遞點的收費標準為:首重(重量小于等于)收費元,續(xù)重(不足). (:一個包裹重量為則需支付首付元,續(xù)重元,一共元快遞費用)

1)若你有三件禮物重量分別為,要將三個禮物分成兩個包裹寄出(:合為一個包裹,一個包裹),那么如何分配禮物,使得你花費的快遞費最少?

2)對該快遞點近天的每日攬包裹數(shù)(單位:)進行統(tǒng)計,得到的日攬包裹數(shù)分別為件,件,件,件,件,那么從這天中隨機抽出天,求這天的日攬包裹數(shù)均超過件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)如圖,過定點的直線交橢圓兩點,連接并延長交,求證:.

查看答案和解析>>

同步練習冊答案