【題目】已知圓O1的方程為x2(y1)24O2的圓心為O2(2,1)

(1)若圓O1與圓O2外切,求圓O2的方程;

(2)若圓O1與圓O2交于A,B兩點(diǎn),|AB|2求圓O2的方程.

【答案】(1) (2) (x2)2(y1)24(x2)2(y1)220

【解析】試題分析:(1)利用兩圓的圓心距等于半徑之和進(jìn)行求解;(2)利用弦長(zhǎng)公式進(jìn)行求解.

試題解析:(1)設(shè)圓O1、圓O2的半徑分別為r1r2,

∵兩圓相切,

|O1O2|r1r2,r2|O1O2|r1,

∴圓O2的方程是(x2)2(y1)24(1)2.

(2)由題意,設(shè)圓O2的方程為(x2)2(y1)2r,

O1O2的方程相減,即得兩圓公共弦AB所在直線的方程,

4x4yr80.

∴圓心O1(0,-1)到直線AB的距離為

解得20.

∴圓O2的方程為(x2)2(y1)24(x2)2(y1)220.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示已知正方體ABCDA1B1C1D1的棱長(zhǎng)為a,過(guò)點(diǎn)B1B1EBD1于點(diǎn)E,AE兩點(diǎn)之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 為參數(shù)),A,B是C上的動(dòng)點(diǎn),且滿足OA⊥OB(O為坐標(biāo)原點(diǎn)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,點(diǎn)D的極坐標(biāo)為
(1)求線段AD的中點(diǎn)M的軌跡E的普通方程;
(2)利用橢圓C的極坐標(biāo)方程證明 為定值,并求△AOB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),當(dāng)x≠0時(shí), >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),則a,b,c的大小關(guān)系正確的是(
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是正方形ABCD的對(duì)角線,弧的圓心是A,半徑為AB,正方形ABCD以AB為軸旋轉(zhuǎn),求圖中Ⅰ,Ⅱ,Ⅲ三部分旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:8284,84,86,86,86,8888,88,88,若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(-x-1)=f(x-1),其圖象過(guò)點(diǎn)(0,1),且與x軸有唯一交點(diǎn)。

(1)f(x)的解析式;

(2)設(shè)函數(shù)g(x)=f(x)-(2+a)x,求g(x)[1,2]上的最小值h(a)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠2萬(wàn)元設(shè)計(jì)了某款式的服裝,根據(jù)經(jīng)驗(yàn),每生產(chǎn)1百套該款式服裝的成本為1萬(wàn)元,每生產(chǎn)(百套)的銷(xiāo)售額(單位:萬(wàn)元).

(1)若生產(chǎn)6百套此款服裝,求該廠獲得的利潤(rùn);

(2)該廠至少生產(chǎn)多少套此款式服裝才可以不虧本?

(3)試確定該廠生產(chǎn)多少套此款式服裝可使利潤(rùn)最大,并求最大利潤(rùn).(注:利潤(rùn)=銷(xiāo)售額-成本,其中成本=設(shè)計(jì)費(fèi)+生產(chǎn)成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案