已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

(1)k=-.(2){-3}∪(1,+∞).

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了尋找馬航殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口出發(fā),沿北偏東角的射線方向航行,而在港口北偏東角的方向上有一個給科考船補給物資的小島,海里,且.現(xiàn)指揮部需要緊急征調(diào)位于港口正東海里的處的補給船,速往小島裝上補給物資供給科考船.該船沿方向全速追趕科考船,并在處相遇.經(jīng)測算當(dāng)兩船運行的航線與海岸線圍成的三角形的面積最小時,這種補給方案最優(yōu).

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)應(yīng)征調(diào)位于港口正東多少海里處的補給船只,補給方案最優(yōu)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的圖象關(guān)于坐標(biāo)原點對稱。
(1)求的值,并求出函數(shù)的零點;
(2)若函數(shù)在[0,1]內(nèi)存在零點,求實數(shù)b的取值范圍;
(3)設(shè),已知的反函數(shù)=,若不等式上恒成立,求滿足條件的最小整數(shù)k的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校擬建一塊周長為400m的操場,如圖所示,操場的兩頭是半圓形,中間區(qū)域是矩形,學(xué)生做操一般安排在矩形區(qū)域,為了能讓學(xué)生的做操區(qū)域盡可能大,試問如何設(shè)計矩形的長和寬?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

經(jīng)市場調(diào)查,某種商品在過去50天的銷量和價格均為銷售時間t(天)的函數(shù),且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N),前30天價格為g(t)=t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數(shù)關(guān)系式;
(2)求日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點,已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x-1 450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若xlog34=1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m、n為正整數(shù),a>0且a≠1,且logam+loga+loga+…+loga=logam+logan,求m、n的值.

查看答案和解析>>

同步練習(xí)冊答案