【題目】《中國好聲音()》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012713日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對歌手,當每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團隊中接受指導(dǎo)訓(xùn)練.已知某期《中國好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:

導(dǎo)師轉(zhuǎn)身人數(shù)(人)

4

3

2

1

獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人)

1

2

2

1

現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.

1)請列出所有的基本事件;

2)求兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2人的概率.

【答案】1)所有的基本事件見解析;(2.

【解析】試題分析:(1) 設(shè)位選手中,4位導(dǎo)師為其轉(zhuǎn)身,3位導(dǎo)師為其轉(zhuǎn)身,2位導(dǎo)師為其轉(zhuǎn)身,只有1位導(dǎo)師為其轉(zhuǎn)身,一一列出基本事件共有即可;(2)在(1)所列基本事件中找出事件兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師人數(shù)不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2所包含的基本事件共個,即可計算其概率.

試題解析: (1)設(shè)6位選手中,4位導(dǎo)師為其轉(zhuǎn)身,3位導(dǎo)師為其轉(zhuǎn)身,2位導(dǎo)師為其轉(zhuǎn)身,只有1位導(dǎo)師為其轉(zhuǎn)身.………………3

則所有的基本事件有15.……6

2)事件兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師人數(shù)不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2所包含的基本事件有:9個,………………9

故所求概率為.………………12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在正方體ABCD-A1B1C1D1,E,F,P,Q,M,N分別是棱AB,AD,DD1,BB1,A1B1A1D1的中點.求證

(1)直線BC1∥平面EFPQ.

(2)直線AC1⊥平面PQMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小五、小一、小節(jié)、小快、小樂五位同學(xué)站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】16艘輪船的研究中,船的噸位區(qū)間為[192,3 246](單位),船員的人數(shù)532船員人數(shù)y關(guān)于噸位x的回歸方程為=9.5+0.006 2x,

(1)若兩艘船的噸位相差1 000,求船員平均相差的人數(shù).

(2)估計噸位最大的船和最小的船的船員人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查在級風的海上航行中71名乘客的暈船情況,在男人中有12人暈船,25人不暈船,在女人中有10人暈船,24人不暈船

(1)作出性別與暈船關(guān)系的列聯(lián)表;

(2)根據(jù)此資料,能否在犯錯誤的概率不超過0.1的前提下認為級風的海上航行中暈船與性別有關(guān)?

暈船

不暈船

總計

男人

女人

總計

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線C1 t為參數(shù)),C2 (θ為參數(shù)),

(Ⅰ)當α= 時,求C1與C2的交點坐標;

(Ⅱ)過坐標原點O做C1的垂線,垂足為A,P為OA中點,當α變化時,求P點的軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知每一項都是正數(shù)的數(shù)列滿足,

(1)用數(shù)學(xué)歸納法證明: ;

(2)證明: ;

(3)記為數(shù)列的前項和,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面是邊長為的菱形, , 的中點,

與平面所成角的正弦值為.

(1)在棱上求一點,使平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5名男生4名女生站成一排,求滿足下列條件的排法:

(1)女生都不相鄰有多少種排法?

(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?

(3)男甲不在首位,男乙不在末位,有多少種排法?

查看答案和解析>>

同步練習(xí)冊答案