已知橢圓的中心在原點(diǎn),離心率為,一個(gè)焦點(diǎn)是F(-m,0)(m是大于0的常數(shù)).
(1)求橢圓的方程;
(2)設(shè)Q是橢圓上的一點(diǎn),且過(guò)點(diǎn)F、Q的直線l與y軸交于點(diǎn)M,若||=2||,求直線l的斜率.
(1)=1(2)直線l的斜率是0,±2
(1)設(shè)所求橢圓方程是=1(a>b>0).
由已知,得c=m,=,∴a=2m,b=m.
故所求的橢圓方程是:=1.
(2)設(shè)Q(xQ,yQ),直線l:y=k(x+m),則點(diǎn)M(0,km),
當(dāng)=2時(shí),由于F(-m,0),M(0,km),
∴(xQ-0,yQ-km)=2(-m-xQ,0-yQ
∴xQ==-,yQ==.
又點(diǎn)Q在橢圓上,
所以=1.
解得k=±2.
當(dāng)=-2時(shí),
xQ==-2m,yQ==-km.
于是+=1,解得k=0.
故直線l的斜率是0,±2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且經(jīng)過(guò)兩點(diǎn)P1(,1)、P2(-,-),求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題








(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:當(dāng)時(shí),;
(Ⅲ)當(dāng)、兩點(diǎn)在上運(yùn)動(dòng),且 =6時(shí), 求直線MN的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的方程為 , 線段  是過(guò)左焦點(diǎn)  且不與  軸垂直的焦點(diǎn)弦. 若在左準(zhǔn)線上存在點(diǎn) , 使  為正三角形, 求橢圓的離心率  的取值范圍, 并用  表示直線  的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:
(1)已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為,過(guò)P作長(zhǎng)軸的垂線恰好過(guò)橢圓的一個(gè)焦點(diǎn);
(2)經(jīng)過(guò)兩點(diǎn)A(0,2)和B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓=1上任意一點(diǎn)P,由P向x軸作垂線段PQ,垂足為Q,點(diǎn)M在線段PQ上,且=2,點(diǎn)M的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過(guò)定點(diǎn)F(0,2)的直線l交曲線E于不同的兩點(diǎn)G,H(點(diǎn)G在點(diǎn)F,H之間),且滿足=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的兩焦點(diǎn)為F1(0,-1)、F2(0,1),直線y=4是橢圓的一條準(zhǔn)線.
(1)求橢圓方程;
(2)設(shè)點(diǎn)P在橢圓上,且|PF1|-|PF2|=1,求tan∠F1PF2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A、B分別是橢圓的左右兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P)在橢圓上,線段PBy軸的交點(diǎn)M為線段PB的中點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)C是橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn),對(duì)于△ABC,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,點(diǎn)滿足:,則(   ).
A.B.C.D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案