一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、55+4
10
B、75+4
10
C、75+2
10
D、55+2
10
考點:由三視圖求面積、體積
專題:計算題,算法和程序框圖
分析:幾何體為直四棱柱,根據(jù)三視圖判斷四棱柱的側(cè)棱長和底面四邊形的形狀及相關(guān)幾何量的數(shù)據(jù),把數(shù)據(jù)代入棱柱的側(cè)面積公式與梯形的面積公式計算.
解答: 解:由三視圖知:幾何體為直四棱柱,且四棱柱的側(cè)棱長為4,
底面是直角梯形,直角梯形的直角腰長為3,兩底邊長分別為4、5,非直角腰長為
10
,
∴幾何體的表面積S=(3+4+5+
10
)×4+
4+5
2
×3×2=27+48+4
10
=75+4
5

故選:B.
點評:本題考查了由三視圖求幾何體的表面積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“m=
1
2
”是“直線(m+2)x+3my+1=0與直線(m+2)x+(m-2)y-3=0相互垂直”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
i2+i3+i4
1-i
在復(fù)平面內(nèi)對應(yīng)的點與原點的距離為( 。
A、1
B、
2
2
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,M={x|x2-x≤0},函數(shù)f(x)=
1
x-1
的定義域為D,則M∩(∁UD)=(  )
A、[0,1)B、(0,1)
C、[0,1]D、{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,-1,2),
b
=(-1,3,-3),
c
=(13,6,λ),若向量
a
b
,
c
共面,則λ=( 。
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A=45°,B=30°,b=2,則a的值為( 。
A、4
B、2
2
C、
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:y2=2px(p>0)的焦點為F,準(zhǔn)線為l,l與x軸交于點R,A為C上一點,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點.
(1)若∠BFD=120°,△ABD的面積為8
3
,求p的值及圓F的方程;
(2)在(1)的條件下,若A,B,F(xiàn)三點在同一直線上,F(xiàn)D與拋物線C交于點E,求△EDA的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
3
 ax2-4x+3,若a=-1,求f(x)的定義域、單調(diào)區(qū)間,以及函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

?x∈[0,
3
4
π],sinx-cosx-ax+1≥0恒成立,則實數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案