分析 (1)以D為原點,DA、DC、DD1為x,y,z軸建立空間直角坐標系,利用向量法能證明DB1⊥AC.
(2)求出平面A1BD的法向量和平面C1BD的法向量,利用向量法能求出平面A1BD與平面C1BD夾角的余弦值.
解答 證明:(1)以D為原點,DA、DC、DD1為x,y,z軸建立空間直角坐標系,
由棱長為2,得A(2,0,0),B(2,2,0),C(0,2,0),
D(0,0,0)A1(2,0,2),B1(2,2,2),C1(0,2,2),D1(0,0,2),
∴$\overrightarrow{D{B_1}}=({2,2,2})$,$\overrightarrow{A{C_{\;}}}=({-2,2,0})$
∴$\overrightarrow{D{B_1}}•\overrightarrow{AC}=-4+4+0=0$,
∴$\overrightarrow{D{B_1}}⊥\overrightarrow{AC}$,∴DB1⊥AC.
解:(2)設(shè)平面A1BD的法向量為$\overrightarrow{n_1}=({{x_1},{y_1},{z_1}})$,
$\overrightarrow{D{A_1}}=(2,0,2)$,$\overrightarrow{DB}=(2,2,0)$
由$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{D{A}_{1}}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{DB}=0}\end{array}\right.$,得$\left\{\begin{array}{l}2{x_1}+2{z_1}=0\\ 2{x_1}+2{y_1}=0\end{array}\right.$,取x1=1,得$\overrightarrow{n_1}=({1,-1,-1})$
設(shè)平面C1BD的法向量為$\overrightarrow{n_2}=({{x_2},{y_2},{z_2}})$,$\overrightarrow{D{C_1}}=(0,2,2)$,$\overrightarrow{DB}=(2,2,0)$
由$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{D{C}_{1}}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{DB}=0}\end{array}\right.$,得$\left\{\begin{array}{l}2{y_2}+2{z_2}=0\\ 2{x_2}+2{y_2}=0\end{array}\right.$,取x2=1,得$\overrightarrow{n_2}=({1,-1,1})$
記求平面A1BD與平面C1BD夾角為θ,
則$cosθ=|{\frac{{{n_1}•{n_2}}}{{|{n_1}|•|{n_2}|}}}|=\frac{1+1-1}{{\sqrt{3•\sqrt{3}}}}=\frac{1}{3}$,
∴平面A1BD與平面C1BD夾角的余弦值為$\frac{1}{3}$.
點評 本題考查異面直線垂直的證明,考查面面夾角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0] | B. | (0,+∞) | C. | (-∞,0) | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,$\frac{1}{2}$) | B. | (-1,1) | C. | (-2,$\frac{1}{2}$) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ②③ | C. | ①②④ | D. | ②④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com