【題目】如圖,在四棱柱,,.

(1)求證:平面;

(2)求證:平面.

【答案】(1)見解析(2)見解析

【解析】試題分析:(1)由平行四邊形的性質(zhì)可得,再根據(jù)線面平行的判定定理可得平面;(2)根據(jù)題意可知四邊形為菱形,進(jìn)而得到對(duì)角線相互垂直,可得,結(jié)合,根據(jù)線面垂直的判定定理可得到平面.

試題解析:(1)解:∵,平面平面;

平面;

(2)解:在四棱柱,四邊形為平行四邊形,

,∴四邊形為菱形,∴,

,,

平面.

【方法點(diǎn)晴】本題主要考查棱柱的性質(zhì)、線面垂直、線面平行的判定定理,屬于難題. 解答空間幾何體中垂直關(guān)系時(shí),一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂直關(guān)系進(jìn)行轉(zhuǎn)化,轉(zhuǎn)化時(shí)要正確運(yùn)用有關(guān)的定理,找出足夠的條件進(jìn)行推理;證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當(dāng)兩個(gè)平面垂直時(shí),在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱ABCA1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,F、F1分別是AC,A1C1的中點(diǎn).

求證:(1)平面AB1F1平面C1BF;

(2)平面AB1F1⊥平面ACC1A1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)來顯示疫情已受控制,以便向該地區(qū)居民顯示可以過正常生活,有公共衛(wèi)生專家建議的指標(biāo)是連續(xù)7天每天新增感染人數(shù)不超過5,根據(jù)連續(xù)7天的新增病例數(shù)計(jì)算,下列各選項(xiàng)中,一定符合上述指標(biāo)的是(  )

平均數(shù)x≤3;標(biāo)準(zhǔn)差s≤2;平均數(shù)x≤3且標(biāo)準(zhǔn)差s≤2;平均數(shù)x≤3且極差小于或等于2;眾數(shù)等于1且極差小于或等于4.

A. ①② B. ③④ C. ③④⑤ D. ④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場(chǎng)對(duì)同一種商品開展促銷活動(dòng),對(duì)購(gòu)買該商品的顧客兩家商場(chǎng)的獎(jiǎng)勵(lì)方案如下:

甲商場(chǎng):顧客轉(zhuǎn)動(dòng)如圖所示的圓盤,當(dāng)指針指向陰影部分(圖中兩個(gè)陰影部分均為扇形,且每個(gè)扇形的圓心角均為,邊界忽略不計(jì))即為中獎(jiǎng).

乙商場(chǎng):從裝有2個(gè)白球、2個(gè)藍(lán)球和2個(gè)紅球(這些球除顏色外完全相同)的盒子中一次性摸出2,若摸到的是2個(gè)相同顏色的球,則為中獎(jiǎng).

試問:購(gòu)買該商品的顧客在哪家商場(chǎng)中獎(jiǎng)的可能性大?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地上年度電價(jià)為0.8元,年用電量為1億千瓦時(shí).本年度計(jì)劃將電價(jià)調(diào)至0.55元~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億千瓦時(shí))與(x﹣0.4)元成反比例.又當(dāng)x=0.65時(shí),y=0.8.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若每千瓦時(shí)電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少時(shí),本年度電力部門的收益將比上年增加20%?[收益=用電量×(實(shí)際電價(jià)﹣成本價(jià))].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),解方程;

(2)當(dāng)時(shí),若不等式上恒成立,求實(shí)數(shù)a的取值范圍;

(3)若a為常數(shù),且函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)b的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生的數(shù)學(xué)測(cè)試成績(jī)的頻率分布直方圖如圖所示,分?jǐn)?shù)不低于a即為優(yōu)秀如果優(yōu)秀的人數(shù)為20,a的估計(jì)值是(  )

A. 130 B. 140 C. 133 D. 137

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足對(duì)任意,存在常數(shù),都有成立,則稱

上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的值域,判斷函數(shù)上是否為有界函數(shù),并說明理由.

(2)若函數(shù)上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地最近出臺(tái)一項(xiàng)機(jī)動(dòng)車駕照考試規(guī)定:每位考試者一年之內(nèi)最多有4次參加考試的機(jī)會(huì),一量某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則就一直考到第4次為止如果李明決定參加駕照考試,設(shè)他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9.求在一年內(nèi)李明參加駕照考試次數(shù)ξ的分布列和ξ的期望,并求李明在一所內(nèi)領(lǐng)到駕照的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案