定義運(yùn)算“*”如下:a*b=
a,  a≥b
b2, a<b
,則函數(shù)f(x)=(1*x)•x-(2*x)(x∈[-2,2])的最大值等于
6
6
分析:根據(jù)新函數(shù)的定義,需要通過(guò)比較兩個(gè)數(shù)的大小來(lái)取函數(shù)值,結(jié)合f(x)的解析式可知,需將x與1,2比較,進(jìn)而將函數(shù)轉(zhuǎn)化為分段函數(shù),再分段求最值比較出此函數(shù)的最大值即可
解答:解:解:依題意,當(dāng)-2≤x≤1時(shí),f(x)=(1*x)•x-(2*x)=1×x-2=x-2,此時(shí)f(x)≤f(1)=-1
當(dāng)1<x<2時(shí),f(x)=(1*x)•x-(2*x)=x2×x-2=x3-2,此時(shí)f(x)在(1,2)上為增函數(shù),f(x)≤f(2)=6>-1
f(x)=
x-2,   -2≤x≤1
x3-2,  1<x≤2
,且f(x)≤f(2)=6
∴函數(shù)f(x)=(1*x)•x-(2*x)(x∈[-2,2))的最大值等于6
故答案為6
點(diǎn)評(píng):本題主要考查運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,分段函數(shù),分類(lèi)討論的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算“*”如下:a*b=
a  a≥b
b2 a<b
,則函數(shù)f(x)=(1*x)•x-(2*x)(x∈[-2,2])的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意兩實(shí)數(shù)a、b,定義運(yùn)算“*”如下:a*b=
a,(a≥b)
b,(a<b)
則關(guān)于函數(shù)f(x)=sinx*cosx正確的命題是( 。
A、函數(shù)f(x)值域?yàn)閇-1,1]
B、當(dāng)且僅當(dāng)x=2kπ(k∈Z)時(shí),函數(shù)f(x)取得最大值1
C、函數(shù)f(x)的對(duì)稱軸為x=kπ+
π
4
(k∈Z)
D、當(dāng)且僅當(dāng)2kπ<x<2kπ+
3
2
π
(k∈Z)時(shí),函數(shù)f(x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算“*”如下:a*b=
a,a≥b
b2,a<b
,則函數(shù)f(x)=(1*x)•x-(2*x)(x∈[-2,2))的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2004•黃浦區(qū)一模)對(duì)任意兩實(shí)數(shù)a、b,定義運(yùn)算“*”如下:a*b=
a若a≤b
b若a>b
.函數(shù)f(x)=2x*2-x的值域?yàn)?!--BA-->
(0,0.77]
(0,0.77]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•淄博三模)對(duì)任意實(shí)數(shù)a,b,定義運(yùn)算“*”如下:a*b=
a,a≥b
b,a<b
,則函數(shù)f(x)=(
1
2
)x*log2(x+2)
的值域?yàn)椋ā 。?/div>

查看答案和解析>>

同步練習(xí)冊(cè)答案