如圖,在△ABC中,已知角A,B,C所對(duì)的邊為a,b,c,且A=30°,
(1)求cosC的值;
(2)若a=5,求△ABC的面積.

【答案】分析:(1)先計(jì)算sinB,再利用和角的余弦公式,即可求得結(jié)論;
(2)利用正弦定理計(jì)算b,利用余弦定理計(jì)算c,進(jìn)而利用三角形的面積公式,即可求得結(jié)論.
解答:解:(1)由于,則,
又A=30°,故cosC=cos(π-A-B)=-cos(A+B)=-cosA•cosB+sinA•sinB
=
(2)由正弦定理得,即,即AC=6
又由余弦定理得:a2=b2+c2-2bc•cosA,即,即
解得,又,則c>a=5,故
從而
點(diǎn)評(píng):本題考查利用正弦、余弦定理解三角形,考查三角形面積的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長(zhǎng);
(2)計(jì)算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
,
AC
=b
,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案