如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),連結(jié)BC與圓O交于F,若∠DBC=
π
2
,∠BCD=
π
6
,AB=6,則EC=
 
考點(diǎn):與圓有關(guān)的比例線段
專題:直線與圓
分析:由題設(shè)能推導(dǎo)出BD=BE=DE=CE,∠C=∠CBE=∠ABD=30°,∠ADB=90°,由此能求出EC的長.
解答: 解:連結(jié)AD,
∵⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),
連結(jié)BC與圓O交于F,∠DBC=
π
2
,∠BCD=
π
6
,AB=6,
∴BD=BE=DE=CE,∠C=∠CBE=∠ABD=30°,∠ADB=90°,
∴AD=
1
2
AB=3
,
∴BD=
62-32
=3
3
,
∴EC=3
3

故答案為:3
3
點(diǎn)評:本題考查線段長的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=x,a2=3x,Sn+1+Sn+Sn-1=3n2+2(n≥2,n∈N*),Sn是數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}為等差數(shù)列.
(ⅰ)求數(shù)列的通項(xiàng)an;
(ⅱ)若數(shù)列{bn}滿足bn=2an,數(shù)列{cn}滿足cn=t2bn+2-tbn+1-bn,試比較數(shù)列{bn}前n項(xiàng)和Bn與{cn}前n項(xiàng)和Cn的大小;
(2)若對任意n∈N*,an<an+1恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,過點(diǎn)(3,
π
3
)且垂直于極軸的直線方程的極坐標(biāo)方程是
 
(請選擇正確標(biāo)號填空).(1)ρ=
3
2
sinθ;(2)ρ=
3
2
cosθ
;(3)ρsinθ=
3
2
;(4)ρcosθ=
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點(diǎn),則在△ADE翻轉(zhuǎn)過程中,正確的命題是
 

①|(zhì)BM|是定值;
②點(diǎn)M在圓上運(yùn)動;
③一定存在某個位置,使DE⊥A1C;
④一定存在某個位置,使MB∥平面A1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a<0”是“函數(shù)f(x)=|ax2-x|在區(qū)間(0,+∞)上單調(diào)遞增”的
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①“M>N”是“l(fā)og2M>log2N”的充要條件;
②已知A、B是雙曲線
x2
a2
-
y2
b2
=1
實(shí)軸的兩個端點(diǎn),M,N是雙曲線上關(guān)于x軸對稱的兩點(diǎn),直線AM,BN的斜率分別為k1,k2,且k1k2≠0.若|k1|+|k2|的最小值為2,則雙曲線的離心率e=
2
;
③取一根長度為3m的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于1m的概率是
1
3

④一個圓形紙片,圓心為O,F(xiàn)為圓內(nèi)一定點(diǎn),M是圓周上一動點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于P,則P的軌跡是橢圓.
其中真命題的序號是
 
.(填上所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1.若曲線y=
1
x
與直線y=0,x=1,x=a,所圍成封閉圖形的面積為2,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC是正三角形,且它的邊長為a,那么它的直觀圖△A′B′C′的面積為( 。
A、
3
4
a2
B、
3
8
a2
C、
6
8
a2
D、
6
16
a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,1,2},B={x-y|x∈A,y∈A},則集合B中元素的個數(shù)為( 。
A、3B、5C、7D、9

查看答案和解析>>

同步練習(xí)冊答案