已知函數(shù)f(x)lnx2,(aR,e為自然對(duì)數(shù)的底數(shù))

()求函數(shù)f(x)的遞增區(qū)間;

()當(dāng)a1時(shí),過點(diǎn)P(0,t)(tR)作曲線yf(x)的兩條切線,設(shè)兩切點(diǎn)為P1(x1,f(x1)),P2(x2f(x2))(x1x2),求證x1x2為定值,并求出該定值.

答案:
解析:

  解:()函數(shù)的定義域是

  2

  當(dāng)時(shí),由,解得;

  當(dāng)時(shí),由,解得;

  當(dāng)時(shí),由,解得,或4

  所以當(dāng)時(shí),函數(shù)的遞增區(qū)間是;

  當(dāng)時(shí),函數(shù)的遞增區(qū)間是

  當(dāng)時(shí),函數(shù)的遞增區(qū)間是,6

  ()因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/5653/0021/53ae5c1b27c9b3f38fece99ed1e6696d/C/Image129.gif" width=157 height=41>,

  所以以為切點(diǎn)的切線的斜率為;

  以為切點(diǎn)的切線的斜率為8

  又因?yàn)榍芯過點(diǎn),所以

  ;10

  解得,,.則

  由已知,從而有.所以為定值12


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;

(2)當(dāng)a≥時(shí),函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(diǎn)(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個(gè)公共點(diǎn)?若存在,求出所有a的值;否則,說明理由.

(3)當(dāng)x≥0時(shí),g(x)≥-f(x)+恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3+x-16,

(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程;

(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo);

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年陜西省高二下期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3-3x及y=f(x)上一點(diǎn)P(1,-2),過點(diǎn)P作直線l.

(1)求使直線l和y=f(x)相切且以P為切點(diǎn)的直線方程;

(2)求使直線l和y=f(x)相切且切點(diǎn)異于P的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當(dāng)x=時(shí),y=f(x)有極值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.

(1)求a的值和切線l的方程;

(2)設(shè)曲線y=f(x)上任一點(diǎn)處的切線的傾斜角為θ,求θ的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案