精英家教網 > 高中數學 > 題目詳情

如圖1,在Rt中, ,D、E分別是上的點,且.將沿折起到的位置,使,如圖2.

(Ⅰ)求證:平面;
(Ⅱ)若,求與平面所成角的正弦值;

(1)根據題意,對于線面垂直的證明一般先證明線線垂直,即由

(2)

解析試題分析:(Ⅰ)在圖1△中,
.                 2分
.4分

.   6分
(Ⅱ)如圖,以為原點,建立空間直角坐標系. 7分
.8分

為平面的一個法向量,
因為
所以 
,得.
所以為平面的一個法向量.      10分
與平面所成角為

所以與平面所成角的正弦值為.13分
考點:證明垂直,線面角的求解
點評:主要是考查了運用向量法來求解角和證明垂直,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,已知平面,為等邊三角形.

(1)若,求證:平面平面;
(2)若多面體的體積為,求此時二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,平面,,分別為的中點.

(I)證明:平面
(II)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在三棱錐中,側面與側面均為等邊三角形, ,中點.

(Ⅰ)證明:平面
(Ⅱ)求異面直線BS與AC所成角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,側棱⊥底面,的中點,的中點.

(1)證明:平面
(2)若為直線上任意一點,求幾何體的體積;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺。
如圖,在四棱臺中,下底是邊長為的正方形,上底是邊長為1的正方形,側棱⊥平面,.

(Ⅰ)求證:平面;
(Ⅱ)求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(理科)(本小題滿分12分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.

(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點,求CP+PB1的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,底面△為正三角形的直三棱柱中,,的中點,點在平面內,

(Ⅰ)求證:;  
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成直二面角,如圖二,在二面角中.

(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD成的角的正弦值。

查看答案和解析>>

同步練習冊答案