P為圓A:上的動點(diǎn),點(diǎn).線段PB的垂直平分線與半徑PA相交于點(diǎn)M,記點(diǎn)M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當(dāng)點(diǎn)P在第一象限,且時(shí),求點(diǎn)M的坐標(biāo).

(1);(2).

解析試題分析:本題主要考查橢圓的定義和標(biāo)準(zhǔn)方程、圓的方程、直線的方程、直線與曲線的位置關(guān)系等基礎(chǔ)知識,同時(shí)考查解析幾何的基本思想方法和運(yùn)算求解能力. 第一問,根據(jù)圓的方程得到圓心A的坐標(biāo)和半徑的長,利用垂直平分線得到,而,所以,根據(jù)橢圓的定義,判斷點(diǎn)M的軌跡為橢圓,得到橢圓的標(biāo)準(zhǔn)方程;根據(jù)已知條件先得出P點(diǎn)坐標(biāo),從而得到直線AP的方程,利用直線與橢圓相交解出M點(diǎn)坐標(biāo),過程中應(yīng)注意方程根的取舍.
試題解析:(1)圓的圓心為,半徑等于
由已知,于是
故曲線Γ是以為焦點(diǎn),以為長軸長的橢圓,
曲線Γ的方程為.       5分
(2)由,得.     8分
于是直線方程為
解得,,
由于點(diǎn)在線段上,所以點(diǎn)坐標(biāo)為.       12分
考點(diǎn):1.橢圓的定義及標(biāo)準(zhǔn)方程;2.直線與橢圓的位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定點(diǎn)F(0,1)和直線l1:y=-1,過定點(diǎn)F與直線l1相切的動圓圓心為點(diǎn)C.
(1)求動點(diǎn)C的軌跡方程;
(2)過點(diǎn)F的直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求·的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

是否同時(shí)存在滿足下列條件的雙曲線,若存在,求出其方程,若不存在,說明理由.
(1)焦點(diǎn)在軸上的雙曲線漸近線方程為;
(2)點(diǎn)到雙曲線上動點(diǎn)的距離最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過雙曲線的左焦點(diǎn),作傾斜角為的直線交該雙曲線右支于點(diǎn),若,且,則雙曲線的離心率為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線與拋物線沒有交點(diǎn);方程表示橢圓;若為真命題,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的中心為原點(diǎn)O,長軸在x軸上,離心率e=,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),=4.

(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.求△PP′Q的面積S的最大值,并寫出對應(yīng)的圓Q的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1、OF2的中點(diǎn)分別為B1、B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過B1作直線交橢圓于P、Q兩點(diǎn),使PB2⊥QB2,求△PB2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓+=1(a>b>0)的左,右焦點(diǎn)分別為F1,F2,點(diǎn)P(a,b)滿足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn).若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點(diǎn),且|MN|=|AB|,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)A,B分別是直線yxy=-x上的動點(diǎn),且|AB|=,設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)過點(diǎn)(,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點(diǎn)P的軌跡的相交弦分別為CD,EF,設(shè)CD,EF的弦中點(diǎn)分別為M,N,求證:直線MN恒過一個(gè)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案