【題目】已知m,n是兩條不同直線,α,β是兩個(gè)不同平面,則下列命題正確的是( )
A.若α,β垂直于同一平面,則α與β平行
B.若m,n平行于同一平面,則m與n平行
C.若α,β不平行,則在α內(nèi)不存在與β平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面
【答案】D
【解析】解:對(duì)于A,若α,β垂直于同一平面,則α與β不一定平行,例如墻角的三個(gè)平面;故A錯(cuò)誤; 對(duì)于B,若m,n平行于同一平面,則m與n平行.相交或者異面;故B錯(cuò)誤;
對(duì)于C,若α,β不平行,則在α內(nèi)存在無(wú)數(shù)條與β平行的直線;故C錯(cuò)誤;
對(duì)于D,若m,n不平行,則m與n不可能垂直于同一平面;假設(shè)兩條直線同時(shí)垂直同一個(gè)平面,則這兩條在平行;故D正確;
故選D.
利用面面垂直、線面平行的性質(zhì)定理和判定定理對(duì)選項(xiàng)分別分析解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次抽獎(jiǎng)活動(dòng)中,8張獎(jiǎng)券中有一、二、三等獎(jiǎng)各1張,其余5張無(wú)獎(jiǎng).甲、乙、丙、丁四名顧客每人從中抽取2張,則不同的獲獎(jiǎng)情況有( )
A.24種
B.36種
C.60種
D.96種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“x∈R,x2+ax+1≥0成立”是“|a|≤1”的( )
A.充分必要條件
B.必要而不充分條件
C.充分而不必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)滿足下列三個(gè)條件:
①對(duì)任意的x∈R都有f(x)=f(x+4);
②對(duì)于任意的0≤x1<x2≤2,都有f(x1)<f(x2);
③y=f(x+2)的圖象關(guān)于y軸對(duì)稱.
則下列結(jié)論中,正確的是( )
A.f(4.5)<f(6.5)<f(7)
B.f(4.5)<f(7)<f(6.5)
C.f(7)<f(4.5)<f(6.5)
D.f(7)<f(6.5)<f(4.5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在復(fù)平面內(nèi),復(fù)數(shù)z=﹣1+2i對(duì)應(yīng)的點(diǎn)所在的象限是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4x﹣22x+1﹣6,其中x∈[0,3].
(1)求函數(shù)f(x)的最大值和最小值;
(2)若實(shí)數(shù)a滿足:f(x)﹣a≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)P到直線y=3的距離比到點(diǎn)F(0,﹣2)的距離大1,則點(diǎn)P的軌跡方程為( )
A.y2=8x
B.y2=﹣8x
C.x2=8y
D.x2=﹣8y
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b∈R,則“a>b>1”是“a﹣b<a2﹣b2”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】具有線性相關(guān)的兩個(gè)隨機(jī)變量x,y可用線性回歸模型y=bx+a+e表示,通常e是隨機(jī)變量,稱為隨機(jī)誤差,它的均值E(e)= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com