已知曲線
的一條切線的斜率為
,則切點的橫坐標(biāo)為( )
A.1 | B. | C.4 | D.4或 |
試題分析:根據(jù)斜率,對已知函數(shù)求導(dǎo),解出橫坐標(biāo),要注意自變量的取值區(qū)間.解:設(shè)切點的橫坐標(biāo)為(x
0,y
0),由于曲線
的一條切線的斜率為
,那么可知
,那么可
知
=4,故可知結(jié)論為C.
點評:考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題,對于一個給定的函數(shù)來說,要考慮它的定義域.比如,該題的定義域為{x>0}.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點P在曲線y=
上,
為曲線在點P處的切線的傾斜角,則
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若曲線
的一條切線l與直線
垂直,則l的方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)函數(shù)
的最大值為3,則
的圖象的一條對稱軸的方程是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)f(x)=x3-3x,過點A(0,16)作曲線y=f(x)的切線,則切線方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)求曲線
在點
處的切線方程;
(2)求
的單調(diào)區(qū)間.
(3)設(shè)
,如果過點
可作曲線
的三條切線,證明:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知三次函數(shù)
有三個零點
,且在點
處的切線的斜率為
.則
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
若存在函數(shù)
使得
恒成立,則稱
是
的一個“下界函數(shù)”.
(I) 如果函數(shù)
為實數(shù)
為
的一個“下界函數(shù)”,求
的取值范圍;
(Ⅱ)設(shè)函數(shù)
試問函數(shù)
是否存在零點,若存在,求出零點個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
對于函數(shù)
,有下列說法:
①該函數(shù)必有兩個極值點;
②該函數(shù)的極大值必大于1;
③該函數(shù)的極小值必小于1;
④該函數(shù)必有三個不同的零點
其中正確結(jié)論的序號為
.(寫出所有正確結(jié)論序號)
查看答案和解析>>