【答案】
分析:(Ⅰ)求出f′(x)大于0,求出t的范圍得到遞增區(qū)間;小于0求出t的范圍得到遞減區(qū)間;討論函數(shù)的增減性得到函數(shù)的最大為f(0),最小為f(-1);
(Ⅱ)求出f′(x)將其和g(t)代入到方程f′(x)=g(t)中得到方程,令
,分當(dāng)t>5或-1<t<2時和當(dāng)2<t<5時,并且考慮特殊值t=2或5,討論p(x)=0這個方程解的個數(shù)即可知道這樣的x
的個數(shù).
解答:解:(Ⅰ)因?yàn)閒′(x)=x
2-2x=x(x-2)
由f′(x)>0⇒x>2或x<0;由f′(x)<0⇒0<x<2,
所以當(dāng)0<t<1時,f(x)在(-1,0)上遞增,在(0,t)上遞減
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182251763043115/SYS201310241822517630431020_DA/1.png">,f(0)=3,
,
而f(0)<f(t)<f(2),
所以當(dāng)x=-1時,函數(shù)f(x)取最小值
,
當(dāng)x=0時,函數(shù)f(x)取最大值f(0)=3,
(Ⅱ)因?yàn)閒′(x)=x
2-2x,所以
,
令
,
從而把問題轉(zhuǎn)化為證明方程
在(-1,t)上有解,
并討論解的個數(shù)
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182251763043115/SYS201310241822517630431020_DA/7.png">,
,
所以
①當(dāng)t>5或-1<t<2時,p(-2)•p(t)<0,所以p(x)=0在(-2,t)上有解,且只有一解
②當(dāng)2<t<5時,p(-2)>0且p(t)>0,但由于
,所以p(x)=0在(-2,t)上有解,且有兩解
③當(dāng)t=2時,p(x)=x
2-2x=0⇒x=0或x=2,所以p(x)=0在(-2,t)上有且只有一解x=0;
當(dāng)t=5時,p(x)=x
2-2x-3=0⇒x=-1或x=3,所以p(x)=0在(-1,5)上也有且只有一解x=3
綜上所述,對于任意的t>-1,總存在x
∈(-1,t),滿足f'(x
)=g(t),且當(dāng)t≥5或-1<t≤2時,有唯一的x
適合題意;
當(dāng)2<t<5時,有兩個x
適合題意.
點(diǎn)評:考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)的增減性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,以及函數(shù)與方程的綜合運(yùn)用能力.