如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=,求AB的長.
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,四邊形ABCD是矩形,,F(xiàn)為CE上的點,且BF平面ACE,AC與BD交于點G
(1)求證:AE平面BCE
(2)求證:AE//平面BFD
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是正方形,底面,且PA=AB.
(1)求證:BD平面PAC;
(2)求異面直線BC與PD所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面A1B1C1;
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點,求二面角A—EB1—A1的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在正三角形中,、、分別是、、邊上的點,滿足(如圖1).將△沿折起到的位置,使二面角成直二面角,連結、(如圖2)
(Ⅰ)求證:⊥平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱柱ABC—中,底面為正三角形,平面ABC,=2AB,N是的中點,M是線段上的動點。
(1)當M在什么位置時,,請給出證明;
(2)若直線MN與平面ABN所成角的大小為,求的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖(1),在等腰梯形CDEF中,CB、DA是梯形的高,,,現(xiàn)將梯形沿CB、DA折起,使EF//AB且,得一簡單組合體如圖(2)所示,已知分別為的中點.
圖(1) 圖(2)
(Ⅰ)求證:平面;
(Ⅱ)求證:平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖, 三棱柱ABC—A1B1C1的側棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上動點, F是AB中點, AC =" 1," BC =" 2," AA1 =" 4."
(1) 當E是棱CC1中點時, 求證: CF∥平面AEB1;
(2) 在棱CC1上是否存在點E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的長, 若不存在,
請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com