已知正數(shù)a,b,c滿足:5c-3a≤b≤4c-a,clnb≥a+clnc,則的取值范圍是   
【答案】分析:由題意可求得≤2,而5×-3≤≤4×-1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,從而,設(shè)函數(shù)f(x)=(x>1),利用其導(dǎo)數(shù)可求得f(x)的極小值,也就是的最小值,于是問題解決.
解答:解:∵4c-a≥b>0
,
∵5c-3a≤4c-a,
≤2.
從而 ≤2×4-1=7,特別當(dāng)=7時,第二個不等式成立.等號成立當(dāng)且僅當(dāng)a:b:c=1:7:2.
又clnb≥a+clnc,
∴0<a≤cln,
從而,設(shè)函數(shù)f(x)=(x>1),
∵f′(x)=,當(dāng)0<x<e時,f′(x)<0,當(dāng)x>e時,f′(x)>0,當(dāng)x=e時,f′(x)=0,
∴當(dāng)x=e時,f(x)取到極小值,也是最小值.
∴f(x)min=f(e)==e.
等號當(dāng)且僅當(dāng)=e,=e成立.代入第一個不等式知:2≤=e≤3,不等式成立,從而e可以取得.等號成立當(dāng)且僅當(dāng)a:b:c=1:e:1.
從而的取值范圍是[e,7]雙閉區(qū)間.
點評:本題考查不等式的綜合應(yīng)用,得到,通過構(gòu)造函數(shù)求的最小值是關(guān)鍵,也是難點,考查分析與轉(zhuǎn)化、構(gòu)造函數(shù)解決問題的能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
α
=(
3
sinωx,cosωx),
β
=(cosωx,cosωx)
,記函數(shù)f(x)=
α
β
,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當(dāng)x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿sin2B=sinA•sinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省月考題 題型:解答題

已知向量sinωx,cosωx),,記函數(shù)f(x)=,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當(dāng)x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿sin2B=sinAsinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省邵陽市洞口四中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量sinωx,cosωx),,記函數(shù)f(x)=,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當(dāng)x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿sin2B=sinA•sinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江西省宜春市宜豐中學(xué)高二第九次模擬數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知向量sinωx,cosωx),,記函數(shù)f(x)=,已知f(x)的周期為π.
(1)求正數(shù)ω之值;
(2)當(dāng)x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角A、B、C滿sin2B=sinA•sinC,試求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量, ,記函數(shù)已知的周期為π.

(1)求正數(shù)之值;

(2)當(dāng)x表示△ABC的內(nèi)角B的度數(shù),且△ABC三內(nèi)角AB、C滿sin,試求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案