【題目】“金導(dǎo)電、銀導(dǎo)電、銅導(dǎo)電、錫導(dǎo)電,所以一切金屬都導(dǎo)電”.此推理方法是(   )

A. 完全歸納推理 B. 歸納推理 C. 類比推理 D. 演繹推理

【答案】B

【解析】分析:利用歸納推理、類比推理和演繹推理的定義判斷.

詳解:因?yàn)橛商厥獾揭话愕耐评頌闅w納推理,所以題目中的推理是歸納推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于算法的敘述中正確的是( )

A. —個(gè)算法必須能解決一類問(wèn)題 B. 求解某個(gè)問(wèn)題的算法是唯一的

C. 算法不能重復(fù)使用 D. 算法的過(guò)程可以是無(wú)限的

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:

①方程若有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則

②函數(shù)是偶函數(shù),但不是奇函數(shù);

③函數(shù)的值域是,則函數(shù)的值域?yàn)?/span>

④一條曲線和直線的公共點(diǎn)個(gè)數(shù)是,則的值不可能是1

其中正確的有 (寫出所有正確的命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-1:幾何證明選講

如圖,⊙O的直徑,的中點(diǎn),點(diǎn)

1求證:;

2求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線的極坐標(biāo)方程

1當(dāng)時(shí),判斷直線的關(guān)系;

2當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】a,b,c表示空間中三條不同的直線,γ表示平面,給出下列命題:

a⊥b,b⊥c,a∥c;

a∥b,a∥c,b∥c;

a∥γ,b∥γ,a∥b

其中真命題的序號(hào)是(  )

A. ①② B. C. ①③ D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={1,a,5},B={2,a2+1}.若AB有且只有一個(gè)元素,則實(shí)數(shù)a的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的方程為以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線的極坐標(biāo)方程

當(dāng)時(shí),判斷直線的關(guān)系;

當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大衍數(shù)列,來(lái)源于《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論.主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生原理.?dāng)?shù)列中的每一項(xiàng),都代表太極衍生過(guò)程中,曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和,是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題.其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,…則此數(shù)列第20項(xiàng)為

A. 180 B. 200 C. 128 D. 162

查看答案和解析>>

同步練習(xí)冊(cè)答案