等差數(shù)列{an}中,已知a1=
1
3
,a2+a5=4,an=33,則n為(  )
A、48B、49C、50D、51
分析:先由等差數(shù)列的通項公式和已知條件解出d,進而寫出an的表達式,然后令an=33,解方程即可.
解答:解:設(shè){an}的公差為d,
a1=
1
3
,a2+a5=4,
1
3
+d+
1
3
+4d=4,即
2
3
+5d=4,
解得d=
2
3

∴an=
1
3
+
2
3
(n-1)=
2
3
n-
1
3
,
令an=33,
2
3
n-
1
3
=33,
解得n=50.
故選C.
點評:本題主要考查了等差數(shù)列的通項公式an=a1+(n-1)d,注意方程思想的應用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a1=-4,且a1、a3、a2成等比數(shù)列,使{an}的前n項和Sn<0時,n的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列﹛an﹜中,a3=5,a15=41,則公差d=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)項和S2n-1=38,則n等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,設(shè)S1=10,S2=20,則S10的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在等差數(shù)列{an}中,d=2,a15=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,a3=
3
2
,S3=
9
2
,求a1及q.

查看答案和解析>>

同步練習冊答案