【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的右準(zhǔn)線方程為,右頂點(diǎn)為.
求橢圓C的方程;
若M,N是橢圓C上不同于A的兩點(diǎn),點(diǎn)P是線段MN的中點(diǎn).
如圖1,若為等腰直角三角形且直角頂點(diǎn)P在x軸上方,求直線MN的方程;
如圖2所示,點(diǎn)Q是線段NA的中點(diǎn),若且的角平分線與x軸垂直,求直線AM的斜率.
【答案】(1); (2)①;②.
【解析】
(1)利用準(zhǔn)線方程,頂點(diǎn)坐標(biāo),得到的值,從而得到橢圓方程;(2)①利用等腰直角三角形,求得點(diǎn)坐標(biāo);再利用點(diǎn)差法,求得直線的斜率,得到直線方程;②根據(jù)點(diǎn)差法得到的結(jié)論,通過假設(shè)直線方程,代入橢圓方程,利用韋達(dá)定理求得兩點(diǎn)坐標(biāo),構(gòu)造關(guān)于的方程,求得的取值。
橢圓C:的右準(zhǔn)線方程為,右頂點(diǎn)為.
,,,,
橢圓C的方程為.
為等腰直角三角形且直角頂點(diǎn)P在x軸上方.
的方程為:,AP的方程為:.
由可得.
設(shè),則,
,,
兩式相減可得
可得:,又,可得.
直線MN的方程為,即.
設(shè)AM的斜率為k,點(diǎn)P是線段MN的中點(diǎn),點(diǎn)Q是線段NA的中點(diǎn),.
的角平分線與x軸垂直,,.
由可得,.
設(shè)AM的方程為.
由可得.
,
,,
以換k,可得,,
,
整理可得:,解得,.
直線AM的斜率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的圖象兩相鄰對(duì)稱軸之間的距離是,若將的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù).
(1)求的解析式;
(2)求的對(duì)稱軸及單調(diào)增區(qū)間;
(3)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)畫出函數(shù)的圖象,并根據(jù)圖象求解下列問題;
①寫出函數(shù)的值域;
②若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正數(shù)數(shù)列的前項(xiàng)和滿足.
(1)求數(shù)列的通項(xiàng)公式;;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解《中華人民共和國(guó)道路交通安全法》在學(xué)生中的普及情況,調(diào)查部門對(duì)某校6名學(xué)生進(jìn)行問卷調(diào)查,6人得分情況為:5,6,7,8,9,10.把這6名學(xué)生的得分看成一個(gè)總體.
(1)求該總體的平均數(shù);
(2)用簡(jiǎn)單隨機(jī)抽樣方法從這6名學(xué)生中抽取2名,他們的得分組成一個(gè)樣本.求該樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(文)(2017·衡水二模)某商場(chǎng)在元旦舉行購(gòu)物抽獎(jiǎng)促銷活動(dòng),規(guī)定顧客從裝有編號(hào)0,1,2,3,4的五個(gè)相同小球的抽獎(jiǎng)箱中一次任意摸出兩個(gè)小球,若取出的兩個(gè)小球的編號(hào)之和等于7則中一等獎(jiǎng),等于6或5則中二等獎(jiǎng),等于4則中三等獎(jiǎng),其余結(jié)果為不中獎(jiǎng).
(1)求中二等獎(jiǎng)的概率.
(2)求不中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若關(guān)于的不等式在[1,+∞)上恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,平面ABCD,四邊形ABCD為菱形,,點(diǎn)M,N分別在棱FD,ED上.
(1)若平面MAC,設(shè),求的值;
(2)若,平面AEN平面EDC所成的銳二面角為,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com